
AD A130 655 MULTMODE RADAR SIGNAL PROCESSOR INTEGRATION FACILT /
JAIR FORCE RIGHT 'AERONAUTIA LARS WRIOHT-PATTERSON

AFBROH JNHONNET AL MAY 83AFWAL-TR831045
UNCLASSIFIED F/G 17/9 NL

mEmllEElIlEEl
EohhEEEEEohEEE

lommhmhmhmhhhu
EohEohhEEmhEEE

w. w

11111 MA 1.

IMCROCOPY RESOLUTION TEST CHIART

!.IiAFWAL-TR-83-1 045

ADAL 306S5

MULTIMODE RADAR SIGNAL PROCESSOR
INTEGRATION FACILITY

John N. Horn
2Lt Gregory A. Frascadore
Byron R. Stephens

May 1983

Interim Report for Period February 1981 - December 1982

Approved for public release; distribution unlimited

L..J 0ev CvO'dble DTIC does

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

£!

Nheu Govemant drawings, specifications, or other data are usd for any purpose
other than In connection with a definitely related Government proc 0 operation,
the Ujnted States Govermwnt thereby Incu.ws no responsibility nor any obligation
whatsoever; and the fact that the government my have formulated, furnished, or in
any ay supplied the said .drawings, specifications, or other data, Is not to be re-
garded by Implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that my in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (SD/PA) and is
releasable to the National Technical Information Service (NTIS). At NT S, It will
be available to the general public, including foreign nations.

This technical report has been reviewed and Is approved for publication.

* J N. HORN //ACK W I
*oject Engineer V Program Mgr. Analysis & Sig Processing

Analysis and Signal Processing Mission Avionics Division

PM THE C0WLANDER

GEORGE L. McFARLAND, Chief
Radar Branch
Mission Avionics Division

"f your address has changed, If you wish to be rmred from our millng list, or
if the addressee Is no longer emploe b your organimtin please noifyAMLkMI-A
N-PAF', Of 45433 to help us maintain a current miling listw.

go piem of this eport should not be returued uness return Is required by security
onsidera tions, contractual obligtiom, or natice an a speatfic dins

OI*

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

Si
,.

UNCLASSIFIED ,,
SECURITY CLASSIFICATION OF THIS PAGE (Mian Dalete .d) I __

REPORT DOCUMENTATION PAGE ______ CMPLETNGORM
I. REPORT NUMBER 2. GOVT ACCESSION NO S. RECIPIENT*S CATALOG NUMBER

ANAL-TR-83-1045
4. TITL,.E (and Subtitle) S. TYPE OF REPORT 6 PERIOD COVERED

INTERIM REPORT FOR PERIOD
MULTIMODE RADAR SIGNAL PROCESSOR INTEGRATION 3 FEB 1981 - 15 DEC 82
FACILITY *6 PERFORMING ORG. REPORT NUMNER

7. AUTHOR(@) 6. CONTRACT OR GRANT NUMBER(&)

JOHN N. HORN
2LT GREGORY A. FRASCADORE
BYRON R. STEPHENS

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10C PROGRAM ELEMENT. PROJECT. TASK

AVIONICS LABORATORY (AFWAL/AARM-3) AREA & WORK UNIT NUNDES
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES (AFSC) 7622 05 11
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

II. CONTROLLING OFFICE NAME AND ADORESS I. REPORT DATE

AVIONICS LABORATORY (ANWAL/AARM-3) May 1983
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES (AFSC) IS. NUMBER Of PAGES
WRTGRT- ATT=RSON Am FR R~P TT .Aq

14. MONITORING AGENCY NAE I ADDRESS(iI diflten km CfnlIrltnd Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

13a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

I. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Black 20, It diffrent frt Repo)

16. SUPPLEMENTARY NOTES

IS. KEY wORDS (Cotime an reverse aide if neessary A identify by block minber)

Radar Signal Processing, Digital Computer.

2.ABSTRACT (Continue on reverse aide If noaeey ond identify by block ntnber)
This effort is centered on the Multimode Radar Signal Processor (MRSP), which
is a high speed prototype signal processor based on the Westinghouse PSP-X
design. The basic objective is to gain familiarity and programming profi-
ciency with this relatively complex system, and ultimately apply its high
speed capabilities to practical radar signal processing problems. Brief
descriptions of the MRSP hardware and software configurations are included
for reader continuity. The major portion of the report describes specific -

DO 1 1473 EDITION OF I NOV OS IS OSOLETE UNCLASSIFIED .'
SECURITY CLASSIFICATION OF THIS PAGE (*a n e aee

hka

SSCUIUY CLAWPVICATIO#I OF 141S PAGOl(um O. zft.E)

activities related to MRSP operations. Primary among these was the development
of a software package to integrate a video output display system to the MRSP.
Additionally, several. representative programs were written to demonstrate the
high speed signal processing capabilities of the MRSP as a complete system.
Finally, several significant improvements were incorporated into the original
MRSP support software package provided by the contractor.

UNCLASSIFIED
S9CURITY CI.ASSIrICAIION OP wPAGleb eft Digs ERat.A.)

OE M- .. " -

AFWAL-TR-83-1045

FOREWORD

The work described in this report was performed under AFWAL/AARM-3

in-house work unit 7622-05-11, covering the period 3 February 1981

through 15 December 1982. The work was performed by John N. Horn,

2Lt Gregory A. Frascadore, and Byron R. Stephens, all of AFWAL/AARM-3,

Wright-Patterson AFB OH. This report was submitted by the authors in

March 1983.

The authors wish to thank Mr. Richard C. Vanderburg for his

knowledgable advice and helpful suggestions.

I

.-

0 ttt

SI IAFWAL-TR-83-1045

TABLE OF CONTENTS

SECTION PAGE

I INTRODUCTION I

1. General Discussion 1

2. MSRP Overview 1

3. Program Milestones 3

II MSRP HARDWARE DESCRIPTION 6

1. Overall Configuration 6

2. System Components 9

a. Physical Description 9

b. Vector Arithmetic Processor (VAP) 9

c. Control Arithmetic Processor (CAP) 10

d. Input/Output Controller (IOC) And Bulk
Memory 10

e. Direct Memory Access (DMA) Channel Bus
Controller 11

f. FIFO Interface 11

g. Differential Address Generator (DAG) 12

h. Console Intelligence Unit (CIU) 13

i. Ramtek Display System 13

J. VAX 11/750 Host Computer 14

III MRSP SYSTEM SOFTWARE DESCRIPTION 15

1. General Description 15

2. Support Software Overview 15

3. CAP Support Package 17

4. Host 1/0 Driver 18

5. VAP Simulator 20

6. System Diagnostics 21

7. Host Processor Operating System 21

m mm V

AFWAL-TR-83-1045

TABLE OF CONTENTS (Cont'd)

SECTION PAGE

IV MSRP System Operations 23

1. RANTEK Display Integration 23

a. General Approach 27

b. Command File Descriptions 28

(1) WTEXT 29

(2) WVECTOR 32

(3) WPLOT 33

(4) WIMAGEU And WIMAGEL 35

(5) WLOOKUP 36

(6) WCURSOR 38

(7) RAMCLEAR 39

(8) NEGATE 40

c. SUMMARY 40

2. Demonstration Program 41

a. Function Description 42

b. Implementation 45

c. Timing Considerations 50

3. Program for Verification of DAG
Operations 51

a. Functional Description 52

b. Program Operation 52

c. DAG Requirement 53

d. Considerations 54

4. Support Software Modifications 54

* V CONCLUSIONS AND FUTURE ACTIVITIES 56

REFERENCES 93

IA vi

! AFWAL-TR-83-1045

TABLE OF CONTENTS (Cont'd)

SECTION PAGE

APPENDIX A SAMPLE PROGRAM LISTINGS 59

APPENDIX B FASTBIN USERS MANUAL AND INSTALLATION GUIDE 75

APPENDIX C CAS COMMAND FILE 89

vi

A

S

'P AFWAL-TR-83-1045 -

LIST OF ILLUSTRATIONS

FIGURE PAGE

1 MRSP Configuration 7

2 Basic RAMSTEK Instruction Set 25

3 Instruction Parameter Format 26

4 Standard Text Character Fonts 30

5 A Pulse Function and Fourier Transform 43

6 Sampled Fourier Transform Pair 44

7 Three-Dimensional Representations 46

viii

V AFWAL-TR-83-1045

SECTION I

INTRODUCTION

1. GENERAL DISCUSSION

This is an interim technical report for the MRSP Integration

Facility Program. The program is being conducted as an in-house effort

under AFWAL/AARM Work Unit Number 76220511. This report covers the

period from February 1981 through December 1982. The effort is centered

on the Multi-mode Radar Signal Processor (MRSP), which is a high speed

prototype processor based on the Westinghouse PSP-X System. The overall

objective is to "wring out" the MRSP and gain experience and programming

proficiency. This effort is intended to serve as an interim preparation

for eventual delivery of the next generation processor, which will

employ the Very High Speed Integrated Circuit (VHSIC) technology.

Included within the broad objective is the development of specific

applications and demonstration programs for the MRSP.

2. MRSP OVERVIEW

The Multi-mode Radar Signal Processor (MRSP) is configured around

the Westinghouse PSP-X Programmable Signal processor. This is a self-

contained complete signal processing system capable of operating at very

high thru-put rates on real-time data inputs. The MRSP has three major

programmable subsystems:

- Vector Arithmetic Processor (VAP)

- Control Arithmetic Processor (CAP)

- Input/Output Controller (IOC).

Additionally, the MRSP has a large block of high speed random access

internal storage, which is known simply as the Bulk memory. The VAP,

CAP, and IOC each have their own unique assembly language, and each is

programmed independently. However, in practical applications, the three

programs must work together in a cooperative synergistic manner. This

is basically accomplished through an interactive group of flags and

interrupts that enable the three programs to communicate with eacn

other.

AFWAL-TR-83-1045

In the usual signal processing environment, the VAP performs high

speed "number crunching" on large arrays of data which have been
initially stored in the Bulk Memory. The IOC is responsible for feeding

raw data to the VAP in just the right amounts, and at just the right

time. In turn, the IOC is responsible for receiving the processed or
partially processed data back from the VAP, and returning it to the pro-

per locations in Bulk Memory. Some processing applications, such as a

large two-dimensional Fast Fourier Transform (FFT) may require two or
more passes through the VAP before the data reaches its final form.

Additionally, in a normal environment, the IOC is responsible for

feeding the VAP-processed data to the CAP for final disposition. The

CAP is the usual MRSP interface to the "outside world". The "outside

world" could represent some form of display system if image data were

being processed, or it could represent some bulk storage device such as

a magnetic tape or disk. In many applications the CAP performs

additional processing on the data, such as packing or scaling, before

final disposition. The CAP is a powerful general purpose processor in

its own right, and has a comprehensive set of instructions. As a

system, the MRSP is most efficient when operating with fixed programs on

the largest possible data arrays, and in a continuous thru-put manner.

The MRSP is fully capable of operating as an independent system

once functioning VAP, CAP, and IOC programs have been loaded, and some

method of inputting raw data to the Bulk Memory has been established.

However, before it can reach this point of independence, the MRSP needs

some "outside" help. A support software package containing such

entities as editors, assemblers, linkers, loaders, and debuggers is

required to initially generate the programs that are to run in the >RSP.

These utilities cannot be independently supported by the MRSP. They

must be resident in an external "host" computer. Additionally, there

must be a hardware link (interface) between the host and the MRSP so

that software generated in the host can be loaded into the MRSP. For

this effort, a Digital Equipment Corporation (DEC) VAX 11/750 general

purpose computer is used to host the MRSP. The VAX has a very flexible

operating system that includes all resources required to fully implement

the MRSP support package. Finally, in a practical signal processingL 2

AFWAL-TR-83-1045

environment, some output device is required to accept the processed data

generated by the MRSP. For this application a video display system was

selected which consists of a RAMTEK Model 9351 Display Controller, and a

CONRAC 17-inch black and white television monitor. This system is capable

of supporting a video image size of 512 X 512 picture cells (pixels),

with up to 256 different intensity levels per pixel.

The major goal of the MRSP Integration Facility is to gain

experience in preparation forthe next generation high speed signal

processor, which will employ the VHSIC technology. To this end, some

special options were included in the MRSP configuration so that it would

more nearly resemble the VHSIC brassboard design. For example, the MRSP

includes two VAP's which can operate in parallel, thereby reducing

processing time by half for certain specific applications. Additionally,

the MRSP configuration includes a Differential Address Generator (DAG)

option. This is a programmable hardware unit capable of generating non-

linear address sequences for the IOC and/or the VAP's. In certain

applications, this feature can significantly reduce average processing

time by eliminating the need for special address computation prior to

each data access. The dual VAP's, along with the IOC, CAP, and DAG
option combine to make the MRSP a powerful multi-processor network capable

of sophisticated parallel operations. In this regard it emulates the future

VHSIC processor, and MRSP operations performed under this effort are

expected to ease transition to the next generation processor.

3. PROGRAM MILESTONES

Detailed milestone objectives for the MRSP Integration Facility

were established in a hierarchical manner since the actual MRSP hardware

was under fabrication, and would not be available for a year after the

program was initiated. The first major milestone was the execution of

procurement procedures necessary to purchase a host computer and an

output display system for the MRSP. This process, requiring

approximately five months, included the generation of several economic

and feasibility comparisons between 4 candidate computer systems. Many

"outside" considerations were involved in the process since this

particular computer would support several programs in addition to the

3

_ : : dai

AFWAL-TR-83-1045

MRSP. A Digital Equipment Corporation (DEC) VAX 11/750 computer system

was selected and delivered to AFWAL/AARM in June 1981. Installation and

checkout of the VAX required an additional month. A RANTEK Model 9351

Display Controller and a CONRAC television monitor were selected for the

display system, and delivered to AFWAL/AARM in July 1981. These display

components were then shipped to Westinghouse in September 1981 for

hardware interface with the MRSP.

Once the prospective host computer was in place, the next major

milestone objective was installation of the existing MRSP support software

package. This was accomplished in August 1981. The support package

contains the various assemblers, linkers, loaders, and debuggers

necessary to develop actual programs for the MRSP. Even though the

* actual hardware was not yet available, the support software enabled

AFWAL/AARM personnel to gain initial insight into MRSP programming

concepts. Additionally, a software package was available from

Westinghouse which provided a high-level language (FORTRAN) simulator for

the Vector Arithmetic Processor (VAP) element of the MRSP. This is the

high speed arithmetic unit which operates on large data arrays, and is

the key to the computational power of the MRSP. The VAP simulation

package closely simulates each individual VAP instruction with a

separate FORTRAN routine. Although much slower than the actual VAP, this

package does enable the user to gain experience in programming practical

VAP-oriented signal processing problems.

The actual MRSP hardware was delivered to AFWAL/AARM in March 1982.

One week of formal training was conducted by contractor representatives

in march 1982, and a second week in April 1982. After the MRSP hardware

was delivered, the primary objective became one of gaining familiarity

and programming proficiency. This newly acquired expertise was then

utilized to develop a package of software routines to efficiently

integrate the MRSP with the RAMTEK display system. Additionally, several

representative programs to demonstrate the processing power of the MRSP

were written.

A. 4

U AFWAL-TR-83-1045

Program development for the MRSP necessarily entails an extensive
involvement with the MRSP support software package. This package was
delivered with the system, but is not tailored to operate with any
specific host computer. The MRSP system user is responsible for
providing his own host. The support software design is flexible, and
will accommnodate a variety of potential host configurations.
Consequently, it is probable that some of the support routines can be
made to operate more efficiently if certain unique capabilities of a
particular host are taken into account. In this regard, an additional
objective was established to incorporate VAX-specific refinements into
the support software package whenever practical.

9 AFWAL-TR-83-1045

SECTION II

MRSP HARDWARE DESCRIPTION

1. OVERALL CONFIGURATION

This section is included for reader continuity. It provides a top

level suimmary of the overall MRSP configuration, and briefly describes

the major hardware components. For a more detailed treatment of hardware

particulars, the reader is referred to the MRSP system manuals.

Figure 1 is a top level drawing of the basic MRSP system

architecture. The MRSP has three major programmiable subsystems:

- Vector Arithmetic Processor (yAP).

- Control Arithmetic Processor (CAP).

- Input/Output Controller (IOC)

Additionally, the MRSP has a large block of internal high speed storage

(2 megawords X 32 bits) which is known as the Bulk memory. The CAP, VAP,

and IOC each has its own unique assembly language, and each is

progranmmed independently. However, in practical applications the three

programs must work together in a cooperative manner. Two additional

devices, the Differential Address Generator (DAG), and the Direct Memory
Access (DMA) Channel Bus Controller may also be considered programmuable

in a sense. However, these devices do not have unique assembly
languages, and are normally loaded from CAP routines.

The MRSP is based on the Westinghouse PSP-X Programmnable Signal
Processor, which can be fabricated in several possible configurations.

This particular configuration incorporates two VAP units which can be

operated in parallel for increased computational efficiency. A VAP

normally performs high speed arithmetic on large data arrays (vectors)

which are complex in nature, i.e., they have a real and an imaginary

component. The IOC controls all data transfers into and out of the Bulk
6 Memory. It is a multi-port device, although only one port is active at

any particular time. The CAP is an independent general purposej - 6

AFWdAL-TR-83-1 045

CL. W.Mo

uj I"

CL

caa

In-

U. " I-

72

9 AFWAL-TR-83-1045

processor. it communicates with the IOC and all system interfaces

through the DMA Channel Bus Controller. The Channel Bus Controller

itself has 7 independent data channels, all of which have access to CAP

main memory. This particular MRSP configuration also incorporates a

Differential Address Generator (DAG) option. The DAG is a separate

programmable hardware device capable of directly generating non-

consecutive memory address sequences. For certain applications,

particularly those Involving non-linear interpolations, the DAG can

significantly improve processing efficiency by eliminating the need for

special address computations prior to each data access from Bulk Memory

or VAP data memory. The DAG interfaces to the CAP through a channel on

the DMA Bus. A DEC VAX 11/750 computer system serves as host processor

for the MRSP. This system runs the MRSP support software package and

provides the resources necessary to generate and load programs into the

MRSP. The VAX can communicate with the CAP through a channel on the DMA

Bus. Additionally, an output video display system consisting of a RAMTEK

Display Controller and a CONRAC television monitor is interfaced to the

MRSP. This system also communicates with the CAP through a channel on

the DMA Bus. Finally, two special options are included with this MRSP

configuration. They consist of a First-In-First-Out (FIFO) buffer, and a

Console Intelligence Unit (CIU). The FIFO serves to interface the MRSP

to a non-synchronous data source, while the CIU is an intelligent CRT

terminal capable of a variety of support functions.

In a typical "real time" signal processing environment, the CAP,

IOC, and VAP units would operate with fixed programs on a continuous

stream of data In "pipeline" fashion. Raw data intially enters the MRSP

through the FIFO buffer. This device accumulates data from a non-

synchronous source, and passes it to the IOC in blocks for increased

efficiently. As an example, the raw data stream could represent

unprocessed radar image returns transmitted from an aircraft currently in

the air. The IOC would accept data from the FIFO and store it in Bulk

Memory. The IOC would then feed the data to the VAP units for some form

of complex processing. If the MRSP were operating with radar image

data, specialized functions such as demultiplexing, demodulation,

frequency filtering, and detection could be performed in the VAP units.

After the data has been processed, the IOC transfers it to the CAP.

A __ ____8

p 'AFWAL-TR-83-1045

Assuming that radar image data were involved, the CAP could move

the final processed results to an output display system, or

alternatively, to some mass storage device such as a magnetic tape or

disk. The CAP is a powerful general purpose processor in its own right,

and if necessary, could perform some additional data processing

operation such as scaling, encoding, or packing before final

disposition. If non-linear address sequences were required at any point

in the VAP or IOC processing, the DAG could be programmed through the

CAP or the host computer with the necessary special functions.

2. SYSTEM COMPONENTS

This section briefly summarizes the major physical and performance

characteristics of the MRSP system hardware components.

* a. Physical Description

The MRSP is housed in a pair of cabinets, each with a

height of 84 inches, a depth of 36 inches, and an outside width of 44

inches. Each cabinet is capable of supporting two separate 50-board

chassis, including the required power supplies, monitors, distribution

panels, and cooling apparatus.. The upper chassis in Cabinet #1 contains

the CAP Central Processor Unit (CPU) and memory, the IOC, the Bulk

Memory, the DAG, and the DMA Channel Bus Controller. The lower chassis

in this same cabinet contains VAP #1. The upper chassis in Cabinet #2

is empty, and the lower chassis contains VAP #2. Integrated circuitry

for the MRSP is based on 9 x 12 inch multi-wire boards. Each cabinet

contains three (3) five-volt 350-Ampere power supplies, and one (1) two-

volt 200-Ampere power supply. Two of the supplies in Cabinet #2 are not

actually used, and could serve as spares. Access to the boards and

power supplies is provided by three sets of doors on the front of each

cabinet,.while access to backplane wiring and cabling is provided

through two sets of doors at the rear of each cabinet.

b. Vector Arithmetic Processor

The VAP is designed to perform high speed complex operations

(real and imaginary components) on large data arrays (vectors). It

incorporates a powerful instruction set which includes 3 types of Fast

9

AFWAL-TR-83-1045

Fourier Transform (FFT) instructions, 4 different filter instructions,

and more than 70 assorted arithmetic, logical, and control instructions.

Basic clock for the VAP is 100 nanoseconds, and it is capable of a 10

megahertz "pipeline" processing and thruput rate. The VAP is oriented

toward the "butterfly" computations required for FFT operations, and it

can perform a full 1024 point-weighted FFT in approximately 0.6

milliseconds. It is also capable of executing a full 16 X 16 bit complex

multiply in one clock cycle. From a hardware standpoint, the VAP

arithmetic unit includes 4 multipliers and 6 ALU's, which are configured

by microprogram control. There are 6 data memories, each 4096 words X 32

bits. The VAP also has dual input and dual output buffers. Each

input/output buffer memory is 4096 words X 32 bits. The microprogrammmed

control structure implemented in the VAP enables an experienced user to

e customize his own specialized instructions for increased efficiency.

c. Control Arithmetic Processor

The CAP is a 16-bit architecture general purpose processor,

but is capable of 32-bit double precision and floating point operations.

It has a powerful instruction set consisting of approximately 200

assorted arithmetic, logical, and control instructions. Several

addressing modes are possible, including direct, indirect, indexed, and

immediate. High level languages, including JOVIAL and FORTRAN are

supported by the CAP. The central processing unit includes 16 general

purpose registers, 32 vectored interrupts, and a memory management

capability. The CAP has a 64K X 16-bit main memory, which could be

expanded up to one megaword with additional memory boards. By means of

the DMA Channel Bus Controller, the CAP can access up to 7

external/internal interfaces, at rates of up to 8 megabytes/second.

d. Input/Output Controller and Bulk Memory

The IOC is a microprogrammed processor which formats and

transfers data between the Bulk Memory and the VAP, CAP, host computer,

and external high speed buffers. It is capable of 100 nanosecond

sequential read/write operations. The IOC has 8 independent ports, each

accessing Bulk Memory, and each controlled by Its own set of instructions
in the program memory. It has a port priority control system, and 32

10

AFWAL-TR-83-1045

flags which can be set or sensed by port programs to provide
synchronization between subsystems. The IOC instruction set provides
complete flexibility in moving data into and out of the Bulk Memory.
Addresses-can be updated in either an indexed or an offset mode, or non-
linearly generated VIA the BAG. Large blocks of data can be moved with
a single instruction. Any desired packing factor, i.e., full 32 bits,
upper 16 bits, or lower 16 bits can be incorporated into any
instruction. The Bulk Memory itself consists of 2 megawords X 32 bits
of high speed random access storage.

e. Direct Memory Access Channel Bus Controller

The DMA Channel Bus Controller provides a programmiable
interface between any of the external devices connected to the Channel
Bus, and the main memory of the CAP processor. It also serves as a
direct interface between any two of the devices. The DMA Controller is
capable of managing up to 7 independent channels. At any particular
instant only one channel has control of the bus, but at that instant
there could be up to 7 transfers in various stages of completion. This
"interleaved" operation enhances traffic flow efficiency on the bus.
Details pertinent to Channel Bus transfers are specified by up to four
16-bit control words. Each channel has its own control word sequence,
and each has its own "hard* registers for control word storage. The DMA
Channel Bus Control words may be loaded in either of two ways. First,
any control word sequence can always be loaded directly by the CAP
through the use of hard register instructions. Additionally, it is pos-
sible for some interfaces to load their own control words. In this
latter case, the first words received by the channel would be
interpreted as the control words. These would then specify how the
following words were to be handled.

f. FIFO Interf ace

The MRSP configuration includes an optional First-In-First-Out

(FIFO) buffer which bypasses CAP or host control to move data at high

* Speed directly into Bulk Memory. This is actually a double buffered
device designed to accept data at the input source rate, and transfer it
at the output destination rate. In effect, it matches the MRSP to a

9 AFWAL-TR-83-1045

non-synchronous data source. The FIFO comnincates directly with an
assigned input port in the IOC. Most FIFO operations are controlled by

a programmable read only memory (PROM), which is set to the users speci-
fications. However, somne parameters, such as mode of operation and block

size can be loaded under program control. The FIFO memory consists of

two identical buffers, each 4096 words X 32 bits. While one memory is
being written, the other may be read (unloaded). This allows a continu-

ous input data stream and simultaneous transfer to the IOC. Each 32-bit

wide buffer is divided into four 8-bit bytes, and the user may pack the

incoming 8-bit bytes in any order desired.

g.- Differential Address Generator

The MRSP configuration includes optional DAG hardware which is

* capable of generating non-consecutive address sequences f or Bulk Memory

and/or VAP data memory. This feature can potentially increase processing

efficiency for certain types of interpolation operations. In effect,
the desired address sequences would be generated directly by hardware

rather than computed by the program. The DAG can produce address

sequences in which the resampled vector is either linear or quadratic
relative to the initial reference. DAG outputs are sent to an Address

Offset Table (AOT) located in the IOC and/or to either or both of two

Pointer Tables (PT1 and PT2) located in the YAP. DAG operations are
controlled from a register file containing 32 words X 16 bits, which is

loaded by either the CAP or a host computer. Values from this file are

then used to initialize various sum, increment, offset, carry, and

compare registers within the DAB hardware. The derivation of DAG

register file values can be an involved process requiring much planning
on the part of the user, especially for second order sequences. The DAG

is assigned to Channel #4 on the DMA Bus.

h. Console Intelligence Unit

The MRSP configuration includes a supplemental ONTEL OP-i
Intelligent Terminal, which serves as a Console Intelligence Unit. This

* is a microprocessor based (INTEL 8080) unit which provides standard com-

puter console functions through a CRT/keyboard. A dual drive floppy

disk peripheral is included with this unit. The ONTEL can function as a

12

AFWAL-TR-83-1045

completely independent system, and is also capable of full interaction

with the CAP processor. It has its own floppy based operating system

which is called DOS/80. The ONTEL CIU is most useful for dynamic

debugging of CAP programs. It can monitor and modify CAP registers and

memory, and can execute CAP programs in single step fashion. The ONTEL

can also save CAP programs on floppy disk. Additionally, it can load

CAP programs from the disk and execute them. It is also possible to use

the ONTEL CRT as a supplemental alphanumeric output display for normal

MRSP operations. The ONTEL is tied to the CAP through a unique CIU

interface.

i. RAITEK Display System

The RAMTEK video display system serves as the primary output

device in the present MRSP configuration. It consists of a RANTEK Model

9351 Display Controller, a CONRAC 17-inch black and white television

monitor, and a manual joystick cursor controller. The system has

sufficient refresh memory to support an image size of up to 512 X 512
picture cells (pixels), with each pixel being represented by up to 8

bits of intensity data (256 grey levels). Any pixel in refresh memory

may be randomly accessed. The RA.TEI Controller has a comprehensive

instruction set which enables it to plot functions, generate text and

graphics symbols, and display image intensity data in a raster format.

The capability to load variable look-up tables, reverse display

polarity, blink the display, and generate a joystick controllable cursor

is also included. To control the system, unique RAMTEK instruction

codes are programmed as data words within a CAP assembly language

routine. The RAMTEK video display system communicates with the MRSP

through Channel #6 on the DMA Bus, and CAP Interrupt #6.

J. VAX 11/750 Host Computer

A Digital Equipment Corporation VAX 11/750 computer system

serves as a host processor for the MRSP. The VAX is a 32-bit medium-

scale general purpose machine. It is not dedicated to the MRSP, and

supports several additional programs. The VAX has an extremely

13

AFWAL-TR-83-1045

comprehensive and flexible operating system (VAX/VMS), which is based on

virtual memory management techniques. In its role as host, the VAX

executes the MRSP support software package, and provides the resources

required to generate and load runnable binary CAP, YAP, and IOC modules.

The VAX is hardware linked to the MRSP through an MDB Corp. plug-

compatable equivalent of a DEC DR-118 Interface. It comunicates with

the CAP through Channel #3 on the DNA Bus.

1

14

AFWAL-TR-83-1045

SECTION III

MRSP SYSTEM SOFTWARE DESCRIPTION

1. GENERAL OVERVIEW

This section is included for reader continuity. It provides a top

level summary of the MRSP Support Software Package, which is the primary

user/software interface required for normal MRSP system operations. A

separate Westinghouse software package which provides a high level

language (FORTRAN) simulator for the VAP element of the MRSP is also

described. Finally, some directly applicable features of the host
processor operating system (VAX/VMS) are briefly highlighted. For a more

detailed description of software particulars, the reader is referred to

the MRSP and VAX system manuals.

2. SUPPORT SOFTWARE OVERVIEW

The individual routines required to assemble, link, load, debug,

execute, and modify useful programs for the MRSP comprise an overall

system of modules called the MRSP Support Software Package. This is a

general purpose package written in a machine-independent higher level

language. It cannot be executed or run directly by the MRSP hardware,

but must reside in a separate host processor which supports that

particular language. A DEC VAX 11/750 system serves as host for this

particular MRSP configuration. The MRSP Support Package does not include

a text editor, which is required to generate intial source code programs

for the VAP, IOC, and CAP. An editor must be provided by the VAX host.
Additionally, some VAX resources are required to create the final binary

coded load module.

Generation of a runable program for the VAP, IOC, or CAP is a

multi-step process. It is accomplished from a standard keyboard/CRT

computer terminal supported by the VAX host processor. First, the user

invokes one of the VAX text editors, and types the source program in the

assembly language for that particular unit. The VAP, IOC, and CAP each

have their own assembly language mneumonics. After the source program

has been written, the appropriate assembler is invoked. The assembler

15

9 AFWAL-TR-83-1045

creates a file in which the mneumonics and symbols used in the source

program are converted into numeric machine instruction codes and

addresses. Next, the assembler output file is operated on by a VAX-

specific commnand file called "BINGEN" (Binary Generator). BINGEN creates
still another file in which the assembler code is converted into a

loadable binary format. Finally, the loader itself is invoked, which

moves the runnable binary program module into the MRSP.

The BINGEN commnand file operates on assembled programs in a

particular ASCII-octal format. This format is generated directly by the

VAP and IOC assemblers. However, the output from the CAP assembler is in
an absolute binary format which BINGEN does not recognize. An

additional step is required to convert assembled CAP program files into
the desired format. The utility which performs this conversion is called

S the CAP Translator. It is invoked prior to the BINGEN operation. All

three assemblers have the option of generating an additional list file,

which is printed in human-intelligible ASCII characters. This file

contains the source mneumonics and symbols in tabular form. An adjacent

column shows the equivalent machine operation codes and translated

symbolic addresses. An additional adjacent column indicates the memory

location in which each machine coded instruction and operand will be

stored when the program is eventually loaded. The list file is

particularly useful for program debugging purposes.

BINGEN is an interactive VAX-specific cormmand file which uses VAX

resources to convert a file in ASCII-octal format into a loadable binary

image file. BINGEN prompts the user for the name of the unit to be

loaded (yAP, CAP, or IOC), and then for some specific parameter

definitions. The nominal values for these parameters are stored in a

separate default file. If the user desires the default values, he simply

types a carriage return in response to the prompt. BINGEN then requests

the name of the ASCII-octal format file which is to be converted. For
the actual binary conversion process, BINGEN invokes the VAX Macro

assembler and the VAX Compatibility Mode task-builder. Finally, after
the required processing has been accomplished, BINGEN asks for the name

of the loadable file to be generated.

16

AFWAL-TR-83-1045

Once an operational binary program file has been created in Lae

host processor, the loader segment of the MRSP Support Software Package

is invoked. This segment provides the user with a method to physically

load a jnnable program into the MRSP. In addition to actually loading

programs, the loader has the ability to make specific load-time changes

to a module in accordance with a previously created edit file.

When a new operational program is first tested in the yAP, CAP, or

IOC, the probability that some subtle programmiing errors or 'bugs" will

exist is quite high, especially if sophisticated data manipulations are
involved. For this reason, a Debugger module is available in the MRSP

Support package which enables the user to locate and correct programmiing
errors. The Debugger permits direct interactive access with the VAP,

CAP, IOC, or DAG. The user can examine and modify the contents of data
memories and internal register memories within the specified MRSP unit.

Additionally, he can set breakpoints, execute the program on a complete

or single step basis, and reset the processor. These operations are all
performed from a standard keyboard/CRT which is supported by the host

processor. In addition to its main function of debugging new programs,
the MRSP Debugger module has a second important purpose. It provides a
means to execute any program which has been loaded into the yAP, CAP, or

IOC. For this application, the Debugger is normally invoked imediately

after the loader. The operator then selects the desired MRSP unit and

sends an EXECUTE conmmand.

3. CAP SUPPORT PACKAGE

The CAP Support Package is a segment of the overall MRSP support

package. It provides a number of supplemental service routines unique to

programs written for the CAP. These routines include a File Manager, a

Linker, a Simulator, and a Deassembler.

The CAP File Manager is a general utility which has been designed

to maintain and keep track of CAP source and relocatable (binary-coded)

* program files. It is useful for such operations as adding new code

segments to existing files, deleting files, copying files, or renaming
files.

17

AFWAL-TR-83-1045

The CAP Linker is a routine which collects independently assembled

relocatable program elements, and binds them into a single load module.

Undefined symbols within a particular relocatable elenent are resolved

through reference to externally defined symbols in the other relocatable

elements. This effectively enables communication between the

independently assembled elements when the program is executing.

The CAP Simulator precisely duplicates the operational behavior of

the CAP Processor, and provides a variety of detailed outputs. In

operation, the simulator maintains a software replica of CAP memory

within the host processor. The program to be simulated is assembled in

the normal manner, just as it would be with the actual CAP. The output

of the simulator is a detailed sequential listing of all CAP instructions

that were executed, and a dump of all programmable registers. The

printout also includes the actual execution time of each instruction, as

well as the total accumulated program execution time to that point.

As one of the assembler options, the executable binary module can

be deassembled, producing as well as possible, an assembly language

source listing of that program. However, this can only be done at

assembly time.

4. HOST I/O DRIVER

The Host Input/Output Driver is one of the most useful entities in

the MRSP Support Package. It provides a software communications link

between the host processor and the MRSP. The Host I/O Driver consists of

a number of separate modules which can perform such functions as the

following:

a. Assign a host I/O channel to the MRSP.

b. Transmit data back and forth between a high level language

applications program running in the host and the MRSP.

c. Print I/O status code messages.

d. Load CAP memory management registers.

e. Reset a specified MRSP unit, or execute a program in that unit.

18

AFWAL-TR-83-1045

The major user interface module within the Host 1/O Driver package

is called PSPIO. This module may be linked to a high level language
applications program running in the host, and called as a subroutine.
When used as a subroutine, the PSPIO module requires 8 parameters. These

are detailed as follows:

a. Function - the actual operation that is to be performed on this
transfer, i.e., read, write, execute, or initialize.

b. Logical Unit Number - the assigned host processor 1/O channel

for this transfer.

C. Unit Descriptor - the name of a file that contains parameters
to identify the particular MRSP unit with which the transfer is to occur,
i.e., yAP, CAP, IOC, Bulk Memory, or DAG.

d. Starting Address - the absolute memory address within the]
object MRSP unit at which the transfer is to begin.

e. Word Count - the actual number of words to be sent or received

on this transfer.

f. Buffer - the name of a memory array in the host processor from
which data is to be sent or received on this transfer.

g. Time Out Count - A parameter which determines how long the

host processor will wait for a response once a transfer has been
initiated. If no response is received within this interval, an error

message will be generated.

h. Status - a one-word code indicating either that the transfer
was completed normally or that an error occurred. If the transfer is not

completed normally, the code identifies the particular error.

PSPIO is extremely useful in situations where MRSP processing is
required to support a high level language applications program running in
the host processor. It effectively plac-es the full computational power
of the MRSP at the disposal of the applications program on an interactive
basis. Some specific examples in this regard could include the
transmission of special function data directly to the DAG register file,

the transmission of weighting functions to VAP data memory for FFT

19

AFWAL-TR-83-1045

operations, or the transmission of interactive user inputs directly to

CAP memory for MRSP output interface processing.

5. VAP SIMULATOR

The VAP Simulator is a Westinghouse-developed package which

provides a high level language (FORTRAN) simulation of the Vector

Arithmetic Processor (VAP) element of the MRSP. It may be used to

support the development, analysis, and evaluation of VAP-specific

algorithms. Use of the simulation package requires knowledge of the

MRSP and its functions, particularly the interaction between the IOC and

the VAP. Specific knowledge of the VAP instruction set, and the meaning

of each instruction field is also required.

The VAP simulation package contains a set of FORTRAN subroutines

which simulate the most commonly used VAP instructions. This would

include the Fast Fourier Transform (FFT) instructions, the DETECT

instruction, and a repertoire of arithmetic instructions that perform

operations with complex numbers. Some logical and control instructions

are also included. Each simulated instruction is represented by a unique

subroutine which has the same name as the actual VAP instruction.

Control fields in the actual instruction are represented by subroutine

parameters in the simulated instruction. VAP memory is simulated by a

large COMMON storage block, which the calling FORTRAN program reserves in

the host processor memory. In the simulation package, the large COMMON

block is partitioned into 10 sub-blocks of 2048 integers. These sub-

blocks are further partitioned into pairs, each representing a complex

number (real and imaginary components). The 10 sub-blocks represent the

6 VAP data memories plus the two input buffers and the two output

buffers. Subroutines in the VAP Simulator package communicate with one

another through reference to the COMMON block.

To use the VAP Simulator, the analyst develops a main FORTRAN

calling program which roserves the COMMON block and defines the

algorithm that is to be implemented. Each VAP instruction in the

algorithm would be represented by a call to the appropriate subroutine.

Parameters passed to the subroutine would contain the same information as

20& _

AFWAL-TR-83-1045

the corresponding fields in the actual VAP instruction. The simulated

instructions are executed in exactly the same order as real instructions

in an actual VAP program. Since it is executing entirely within the

host processor, the VAP simulator is, of course, much slower than the

actual VAP processor. However, an algorithm implemented by the VAP

simulator should yield exactly the same results as it would in the

actual VAP. For this reason, the simulator is extremely useful for the

initial development of the VAP-oriented signal processing algorithms.

6. SYSTEM DIAGNOSTICS

The MRSP Support Package includes an extensive repertoire of

hardware diagnostic routines which verify proper operation of the

MRSP/host processor interface, as well as each individual hardware module

within the MRSP itself. The diagnostic package is organized into a

hierarchical structure, such that the highest level tests the MRSP/host

interface, the next highest level tests the major MRSP hardware units

(i.e., CAP, VAP, and IOC), and successively lower levels test individual

components within each major unit. At the lowest levels, each individual

instruction within the VAP, CAP, and IOC is exercised; and detailed

patterns at generated to test each cell in the main data memories and
internal register memories. Any individual diagnostic routine at any

level may be executed as an independent module for selective test of a

particular hardware component. The diagnostics package is executed from

a standard keyboard/CRT terminal supported by the host processor.

7. HOST PROCESSOR OPERATING SYSTEM

From a practical standpoint, all user interactions with the MRSP

must necessarily include the host processor and its operating system. As

previously indicated, a VAX 11/750 serves as the primary host processor

to the MRSP for this effort. The VAX operating system (VAX/VMS) is

extremely comprehensive, and its interactions with the MRSP Support

Software package are quite complex. For example, VAX/VMS supports the

computer terminals that MRSP system users employ to develop, load, and

debug programs. It provides text editors which are required for MRSP

source program development, and it supplies resources required for the

previously described BINGEN operation. Modules in the Host I/O Driver

21

AFWAL-TR-83-1045

package depend on the invocation of various VAX System Service routines

to fulfill their function. One of the most useful features of VAX/VMS is

the Digital Command Language (DCL). This is a unique console language

that functions at the operating system level. DCL provides the ability

to generate command procedures, which in effect, are files of commuands at

the operating system level. These files enable the VAX to automatically

execute a long string of system level commands that would ordinarily

require individual operator input. This capability can greatly

streamline MRSP system operations from a user standpoint. For example,

it will be recalled that the procedure to transform a CAP program from

ASCII source code to a loaded binary module involves successive

invocations of the CAP Assembler, CAP Translator, BINGEN, MRSP Loader,

and MRSP Debugger. Each of these invocations entails a number of

operating system level commnands on the part of the user. The entire
process could be simplified by creating a DCL command procedure that

contains the required string of commands, including any parameters that

would be entered manually. Then the user need only specify the name of

the command procedure, and the whole sequence is executed automatically.

Commnand procedure files are especially helpful in situations where the

MRSP interacts with a number of high level language applications

programs running in the VAX. As an additional example, suppose that it

is desired to do some FFT processing on a large array of data, and then

move the results to a display system controlled by the CAP. To

accomplish this, one could first issue commnands to load the operational
VAP, CAP, and IOC programs into the MRSP. This would be followed by a

command to execute a FORTRAN program that reads a magnetic tape and moves

the data to Bulk Memory. Another FORTRAN program would then be executed

which generates an FFT weighting function and moves it to yAP data

memory. Finally, commands would be issued to execute the individual VAP,

CAP, and IOC programs. If it were desired to also save the processed

data on magnetic tape, then an additional FORTRAN program would be

executed to accomplish this function. All of these commnands could be

placed in a single DCL file, and automatically executed in sequence by

* simply specifying the name of that file. Any parameters that would
ordinarily require manual entry can also be included in the command file.

A 22

AFWAL-TR-83-1045

SECTION IV

MRSP SYSTEM OPERATIONS

1. RAMTEK DISPLAY INTEGRATION

The video display system interfaced to the MRSP consists of a

RAMTEK Model 9351 Display Controller, and a CONRAC 17-inch black and

white television monitor. The RAMTEK controller includes a 512 X 512 X 8

bit digital refresh memory and a 2048 X 13 bit video look-up table. The

refresh memory permits the system to display up to 262, 144 individual

picture cells (pixels) on the monitor screen. Each pixel can be coded to

any of 256 different grey levels. The look-up table determines how each

individual pixel will be coded. Any desired mapping function (linear,

logrithmatic, exponential, etc.) may be loaded into the look-up table

under program control. Since the refresh memory in this particular

system is only 8 bits deep, only 256 of the available 2048 look-up table

locations would be used in practical applications. The RAMTEK unit

includes hardware to control an internally generated cursor symbol,

either under program control or manually be means of a joystick.

Additionally, the RAMTEK Controller includes circuitry to generate

alphanumeric characters and graphics (vectors). The CONRAC monitor has

been tuned and adjusted to match the RAMTEK controller. In most

references within this report, the MRSP display system will be

conveniently referred to as the "RAMTEK display" or simply as "the

RAMTEK". However, these references implicitly include the CONRAC

monitor.

The RAMTEK display system is interfaced to the MRSP through Channel

#6 on the DMA Channel Bus Controller. It operates through a CAP

program which controls all the required interrupt processing and

"handshake" operations. Under normal implementation, the CAP program

performs some processing operation on the data, and then forwards it to

the RAMTEK for display. Every CAP program which uses the RAMTEK must

incorporate a series of RAMTEK instruction words. These instructions

are programmed as data words in the CAP program, while the actual data

to be displayed is represented as a CAP memory array.

23

AFWAL-TR-83-1045

The RAMTEK controller provides a repertoire of 20 basic instructions
which can be used to manipulate data presented on a CRT display. There
are 16 possible parameters through which the programmer can "customize"

instructions executed by the RAMTEK. Not all parameters apply to all
instructions, and some of the parameters are not used in the Model 9351.

However, the system is designed for optimum flexibility, and the number
of possible instruction/parameter combinations is very large. As would

be expected, the usual price for flexibility of operation is complexity
of programmilng. Any RAMTEK operation requires a series of 16-bit
instruction words which precede the actual data to be displayed. These

words effectively constitute a unique RANITEK "subprogram" within the CAP
program. The first word includes an 8-bit op-code field and several

smaller fields which specify such factors as addressing mode, background

polarity, byte packing, and whether additive write is to be used. This
is followed by an operand flag word which indicates the presence or

absence of the 16 possible parameter operands. The operands appear in a
fixed sequence, and each bit in the flag word corresponds to an operand

in the same sequence. The actual number of words associated with each

parameter varies from 1 to 12, depending on the parameter. These words
di-ectly follow the flag word. The operand words are followed by a byte
count word, and finally by the data words themselves. The RAMTEK
instruction set and parameter formats are summnarized in Figure 2 and 3.

From the above it is apparent that the programmer is literally

working at the bit level, and constantly referring to detailed manuals
to derive the various op-codes, control fields, flag words, operands,
and byte counts. Moreover, this process must be repeated for each CAP
program that commnunicates with the RAMTEK display. The RAMTEK display

integration effort can be summnarized as an attempt to move some of the
more useful RANTEK instructions to a higher level from which they could

be directly referenced by descriptive names. This would minimize the
need for bit level coding in each individual program, which is a tedious
process and highly prone to error.

24

AFWAL-TR-83-1045

OP- INSTRUCTION W 'E

CODE

01 LOAD HARD REGISTER

02 READ SOFT REGISTER

03 LOAD AUXILIARY MEMORY

04 READ AUXILIARY MEMORY

05 RESET

06 INITIALIZE

07 NO OPERATIONS

08 SET PARAMETER

09 ERASE

OA WRITE IMAGE

08 READ IMAGE

OC WRITE TEXT

00 WRITE RASTER

OE WRITE VECTOR

10 WRITE PLOT

16 WRITE CURSOR STATE

17 READ CURSOR STATE

18 WRITE KEYBOARD

19 READ KEYBOARD

IA SENSE PERIPHERAL STATUS

Figure 2. Basic Ramtek Instruction Set

25

AFWAL-TR-83-1045

11511411311211111019181716151413121110!

I OP CODE IXlADB9KIRPlOFIOFI

OPERAND BIT ARGUMENT OPERAND FLAG

0 SUSCHANNELS SUCHANNELS MASK

I FOREWOtW FOREGROUND COLOR

2 XKG0,o o BACKGROUND COLOR

3 INDEX 1 X ADDRESS
Y ADDRESS

4 INDEX 2 X ADDRESS

Y ADDRESS

S ORIGIN X ADDRESS (NUT USED)

Y ADDRESS

6 WINDOW START X ADDRESS

START Y ADDRESS

STOP X ADDRESS

STOP Y ADDRESS

7 SCAN SCAN SEQUENCE

8 DIMENSION FONT/SEGMENT WIDTH

FONT HEIGHT

9 SPACING HORIZONTAL SPACING

VERTICAL SPACING

10 SCALE Y SCALE X SCALE

11 FUNCTION NOT USED

12 CONIC EQUATION - NOT USED

- NOT USED

-- NOT USED

- NOT USED

- NOT USED

- NOT USED

13 BASELINE (FILLED PLOT BASELINE

14 SCROLL COUNT (NOT USED

15 START POINT F X ADDRESS

I - T ADDRESS j

S DATA BYTE COUNT

LEGEND

IX ADDRESSING MODE (0 ABSOLUTE I INDEX 1 2 INDEX 2 3 RELATIVE)
AD ADDITIVE WRITE (0 REPLACEMENT 1 ADDITIVE)
BK REVERSE BACKGROUND (0 NORMAL BACKGROUND 1 REVERSED BACKGROUND)
RP REVERSE PACKING FLAG (0 LEFT BYTE FIRST 1 RIGHT BYTE FIRST)
OF OPERAND FLAG (U NO ARGUMENT OR FLAG WORDS EXISTS 1 FLAGGED ARGUMENTS EXIST)
OF DATA FLAG (0 NO DATA OR LENGTH WORD EXISTS 1 DATA BYTES

Figure 3. Instruction Parameter Format

26

...

AFWAL-TR-83-1045

9
a. General Approach

In the normal MRSP software development environment, the most

frequently used RAMTEK instructions are those which write image, text,

and graphics data to the CRT display. Instructions which clear the

display, control the cursor, and load the auxiliary memory with a lookup

table are also very useful. One of the major technical objectives of

this effort was to integrate the RAMTEK display from a software

standpoint, and make it easier to use from an operator standpoint. This

was accomplished primarily through the features of the VAX VMS Operating

System, and the PSPIO Utility Routines in the MRSP support package. The

VAX Operating System allows the programmer to create command procedure

files. Such files enable the VAX to execute a long series of commands at

the operating system level that would ordinarily require individual

operator input. Once a command file has been created, the operator need

only specify the name of the file and the VAX does the rest. The PSPIO

utility also has some handy features. One of the most useful is to

allow a VAX FORTRAN program to directly and independently send data to

any desired location in CAP memory. It also enables a VAX FORTRAN

program to command the execution of an assembly language program loaded

into VAP, CAP, or IOC.

The approach used in integrating the RAMTEK software was to

write separate VAX command files for individually implementing the most

useful RAMTEK instructions. For example, VAX command files named WVECTOR

and WTEXT were written to implement tne basic RAMTEK WRITE VECTOR and
WRITE TEXT instructions respectively. Some of the command files are

interactive in that they dynamically request operator inputs directly

from the keyboard terminal at run time. Others require previously

created data files, while still others execute directly without operator

inputs or data files. All of these command files have one essential

feature. They convert the bit level RAMTEK operand codes to higher Tevel

mneumonics which can be entered directly from the keyboard of an

ordinary computer terminal.

27

AFWAL-TR-83-1045

Each VAX command file representing a RANTEK instruction is designed

to operate as an independent module. In general, these files perform
five basic functions, which are summarized below:

(1) Accept interactive operator parameter inputs directly

from the keyboard terminal and store in a temporary data file.

(2) Load a CAP assembly language program which incorporates

the bit level codes of the desired RAMTEK instruction, and also reserves

storage for parameter data.

(3) Run a VAX FORTRAN program (incorporating the PSPIO

utility) which processes the interactive parameter data and sends it

directly to the specially reserved locations in CAP memory.

(4) Execute the CAP program which now has all required

parameter data. This is actually accomplished by a second FORTRAN

*program incorporating the PSPIO utility.

(5) Perform "housekeeping" functions, including the deletion

of all useless temporary and intermediate data files.

b. Command File Descriptions

The following VAX command files were written during the course

of this effort:

(1) WTEXT - this file implements the RAMTEK WRITE TEXT

instruction to place alpha-numeric characters at an operator selectable

starting point on the CRT display.

(2) WVECTOR - this file implements the RAMTEK WRITE VECTOR

instruction to draw vectors at operator selected endpoints on the CRT

display.

(3) WPLOT - this file implements the RAMTEK WRITE PLOT

instruction. It scales and plots any 512 point function on the CRT

display.

(4) WLOOKUP - this file implements the RAMTEK LOAG AUXILIARY

MEMORY instruction. It loads any 256 point lookup table into the RAMTEK

Display Controller.

28

AFWAL-TR-83-1045

(5) "WIMAGEU - this file implements the RAMTEK WRITE IMAGE

instruction. It scales and displays a 512 X 512 point image from the

upper 16 bits of MRSP bulk memory.

(6) WMIEL - this file implements the RAMTEK WRITE IMAGE

instruction. It scales and displays a 512 X 512 point image from the

lower 16 bits of MRSP bulk memory.

(7) WCURSOR - this file implements the RAMTEK READ CURSOR,

WRITE CURSOR, and SENSE PERIPHERAL instructions. It places a crosshair,

cursor on the CRT display which is manually controllable from a

joystick. Cursor coordinates are continuously updated and presented on

the supplemental ONTEL display.

(8) RANCLEAR - this file sends a MASTER CLEAR instruction to

the RANTEK Controller and completely erases the CRT display. The lookup

* table is not affected.

(9) NEGATE - this file loads a negative lookup table into the

RAMTEK Controller, and changes the polarity of any vector and text data

currently displayed.

(a) WTEXT

The RA14TEK WRITE TEXT instruction reads ASCII

character codes from the host and generates the corresponding text

characters for display. Each character is written into a rectangular

patch of 9 pixels high by 7 pixels wide. Figure 4 shows the available

characters and the font size. Use of this instruction requires that

ASCII characters be sequentially packed in 8-bit bytes. Each 16-bit data

word sent to the RAMTEK would thus contain two characters. These data

words are preceded by a 16-bit flag word containing the byte count, i.e.,

the number of characters in the message to be displayed. The START

POINT parameter is used to specify the starting point of the message.

To make the WRITE TEXT instruction easier to use,

the WTEXT command file was written. This file enables the user to input
* etext data directly from the keyboard of his terminal, or at his option,

to display an alpha-numeric message directly from a previously created

29

* AFWAL-TR-83-1045

iAU If= -r I
20 29 2 28 42 62

EE.E70nBE
28 59 2B 2C S D SE 2F

30 31 32 ~~3 0 43 63
9.T

U AFWAL-TR-83-1045

data file. To enter a message from the keyboard the user simply types @

WTEST. Assuming that the user is working from a standard CRT computer
terminal, a prompt appears on the screen requesting the X and Y starting

coordinates of the alpha-numeric message. These are entered by the user,

each followed by a carriage return. A prompt then appears requesting a

message directly from the terminal keyboard. The user enters the desired

characters and concludes with a carriage return. At this point the

RANTEK, under control of the CAP, displays the message at the desired

locationon the CRT screen. A prompt also appears on the user's terminal

requesting a "YES" or "NO" answer to the question of whether the user
wants to save the message in a data file. If "YES" is selected, a

follow-up prompt requests the name of the data file to be created; and
the internal file containing the message is automatically given the

desired name. If the user does not wish to save the text he-types a
"NO" in response to the prompt, and the internal text file is

automatically deleted. If the user wishes to display a message from a
previously created data file he enters @ WTEXT FILE-NAME, where "FILE-

NAME" is the name of data file containing text and location data. No
terminal prompts are generated in this case. The message from the file

is sent directly to the RAMTEK and displayed on the CRT screen.

The WTEXT comm~and file uses the VAX Digital Commnand Language (DCL)

to generate the interactive inputs from the operator. These are stored
in an intermediate data file. A VAX FORTRAN program is then executed

which reads the intermediate file, processes the text data, and sends it

to CAP memory VIA the PSPIO utility. Next a CAP assembly language

program which moves the data to the RAMTEK is loaded. This CAP program

is executed by a VAX FORTRAN routine utilizing PSPIO. Finally, the last

task of WTEXT is to dispose of the intermediate data file. If "YES" was

selected in response to the save question, the intermediate file is

given the name selected by the user, otherwise it is automatically

deleted. If WTEXT was operating on a previously created data file, that

file is preserved.

31

AFWAL-TR-83-1045

(b) WVECTOR

The RAt4TEK WRITE VECTOR instruction draws a

continuous straight line vector between a starting point and a specified

end-point.- If more than one vector end-point is specified, then

contiguous straight lines will be drawn between the points. It is not

possible to draw more than one vector with the same starting point in

the same WRITE VECTOR instruction. Multiple instructions must be used

if more than one vector is to proceed from the same point. However, it

is possible to draw a continuous closed figure which returns to the

original starting point with only one instruction. It is also possible

to retrace all or part of a previously drawn vector within the same

instruction. Therefore, in practice, multiple instructions would only

be required in cases where there is a discontinuity (open space) between

the vectors to be drawn. Use of this instruction requires the X and Y

coordinate of an end-point to be stored in separate 16-bit data words.

Thus each end-point to be specified requires two 16-bit words. These

data words are preceded by a 16-bit flag word containing the byte count,

i.e., the total number of 8-bit bytes of data to be sent to RAMTEK. The

byte count is 4 times the number of end-points specified. The start

point may be either the Current Operating Point (COP) from the previous

instruction, or a new starting point specified by the START POINT

parameter.

To make the WRITE VECTOR instruction easier to use, an interactive

command file was written for the VAX called UVECTOR. This file enables

the user to input vector end-points directly from the keyboard of his

terminal, or at his option, to draw vectors from end-points stored in a

previously created data file. To enter vector end-points from the

keyboard, the user simply types @ WVECTOR. Assuming that the user is

working from a standard CRT computer terminal, a prompt appears on the

screen requesting the X and Y coordinates of vector end-points. The X

and Y coordinates of each end-point to be specified are entered in

pairs, separated by a commua and terminated with a carriage return. The

prompt reappears after each pair of coordinates has been entered. When

all desired end-points have been entered, the user types "END" in
response to the prompt. The RA14TEK, under control of the CAP, then

draws the specified vectors on the CRT screen. At the same time a

32

AFWAL-TR-83-1045

prompt appears on the user's terminal requesting a "YES" or "NO" answer

to the question of whether the user wants to save the end-points he has

just entered in a data file. If "YES" is selected, a follow-up prompt

requests the name of the data file to be created; and the internal file

containing the endpoints is given the desired name. If the user does

not wish to save the data he types "NO" in response to the prompt, and

the internal file is automatically deleted. If the user wishes to draw

vectors from a previously created data file he enters @ WVECTOR FILENAME

where "FILENAIME" is the name of data file containing vector end-points.

No terminal prompts are generated in this case. The end-point data from

the file is sent directly to the RAMTEK and displayed on the CRT screen.

The WVECTOR command file uses the VAX Digital Command Language to

generate the interactive inputs from the operator. These are stored in

an intermediate data file. A VAX FORTRAN program is then executed which

reads the intermediate file, processes the vector data, and sends it to

CAP memory VIA the PSPIO utility. Next a CAP assembly language program

which moves the data to the RAMTEK is loaded. This CAP program is

executed by a VAX FORTRAN routine using PSPIO. Finally the last task of

WVECTOR is to dispose of the intermediate data file. If "YES" was

selected in response to the save question, the intermediate file is

given the name selected by the user, otherwise it is automatically

deleted. If WVECTOR was operating on a previously created data file,

that file is preserved.

(c) WPLOT

The RAITEK WRITE PLOT instruction generates plot

segments for each 16-bit word present in the instruction data stream,

and automatically updates the current operating point after each segment

is generated. This instruction is very flexible, and considerable

latitude is available to the programmer as to the orientation, size,

height, and spacing of the generated plot. There is also a baseline

parameter through which the programmer can select either a line plot or

a filled area plot.

33

L-A
-tai

AFWAL-TR-83-1045

To-make the WRITE PLOT instruction easier to use at a higher level,

a VAX conmmand file called WPLOT was written. This file uses pre-defined
values for several of the parameters associated with the WRITE PLOT

instruction. A 512 point horizontal baseline was chosen, to be located

across the center of the RAMTEK screen. This allows an equal number of

pixels above and below the baseline to acconmmodate plot segments. The

filled area baseline option was chosen, and plot segments are to be drawn

from left to right. The programmer is responsible for providing some

form of relative scaling. For this application the baseline was defined

as relative zero. Plot segments with positive values should then fall

above the baseline, and those with negative values should fall below it.

The WPLOT commiand file operates on a previously created FORTRAN-

formatted data file containing any 512 point function that the user

wishes to plot on the RAI4TEK display. Scaling occurs automatically. A

* background grid is drawn along with the plot. This grid defines a total

plot area of 500 vertical pixels by 512 horizontal pixels. Each grid

block is 50 pixels high by 64 pixels long. There are 5 blocks above and

below the baseline in the vertical dimension, and 8 blocks along the

baseline. in the horizontal dimension. An alpha-numeric readout also

appears at the bottom of the screen which indicates the maximum absolute
value of the plotted function in either the positive or negative

direction, whichever is greater. Scaling factors are computed such that

the maximum absolute value in either the positive or negative direction

is always a full scale deflection. Each grid block in the vertical

direction, above or below the baseline would then represent one fifth of

the maximum absolute value. Thus it is easy to evaluate or assess
relative maxima or minima at a glance for any plot. To use the WPLOT

commrand file the operator types @a WPLOT FILENAME, where "FILENAME" is

the name of a data file containing the 512 point function to be plotted.

No prompts appear at the operator's terminal, and the desired plot,

along with the grid overlay and alpha-numeric annotation appear
imediately on the RAMTEK screen. The only restriction on the FORTRAN

data-file containing the function is that each point must be a 16-bit

integer word.

34

AFWAL-TR-83-1045

The WPLOT command file executes a VAX FORTRAN program which

computes scaling factors, generates end-points for the grid overlay, and

generates ASCII character data for the alpha-numeric annotation. This

data is then sent to CAP memory VIA the PSPIO utility. A CAP assembly

language program is then loaded which utilizes the WRITE PLOT, WRITE

VECTOR, and WRITE TEXT, instructions, along with the various coded

parameters, to send all the required data to the RAMTEK screen. The CAP

program is executed through a command from a separate FORTRAN routine

incorporating the PSPIO utility.

(d) WIMAGEU and WIMAGEL

The RAMTEK WRITE IMAGE instruction accepts user-

defined coordinates which specify a rectangular area of the screen,

followed by a data stream containing the actual image pixel elements to

be written. The position of a particular pixel in the data stream

determines the screen address, and the intensity of that particular

pixel is determined by a pre-loaded Video Look-Up Table (VLT). An 8-bit

datum could represent up to 256 different intensity levels or "shades of

grey". A single WRITE IMAGE instructio,, can transmit up to 32768 words
to refresh memory. However, since the refresh memory for a 512 X 512

pixel display contains 262, 144 words, many WRITE IMAGE instructions are

required to completely fill the CRT screen with image data. Use of the

WRITE IMAGE instruction requires that each data element to be sent to
the refresh memory be stored in a 16-bit CAP memory word. However, only

the lower 8 bits of each word will actually be transmitted to refresh

memory.

To provide a practical high level implementation for the

RAMTEK WRITE IMAGE instruction, it is assumed that intensity data for a

512 X 512 pixel image is already resident in the MRSP Bulk Memory; and

that the user is looking for an easy way to display it on the RAMTEK -

screen. As previously indicated, a 512 X 512 pixel image would require

a block of Bulk Memory storage containing 262, 144 words. However,

since the Bulk Memory is composed of 32-bit words, it would actually be

possible to store two 512 X 512 pixel images in the same memory block.
One image could reside in the upper 16 bits, and the other in the lower

35
I

AFWAL-TR-83-1045

16 bits. Based on these assumptions, two command files were written for

the VAX called WIMAGEU and WIMAGEL. Each of these files writes a

complete 512 X 512 pixel image from MRSP Bulk Memory directly to the

RAMTEK display screen. WIMAGEU assumes that the image is resident in the

upper 16 bits of Bulk Memory, while WIMAGEL assumes that it is resident

in the lower 16 bits. To use these files from a standard computer

terminal the operator simply enters @ WIMAGEU or @ WIMAGEL, depending

upon what image he wishes to display. No prompts appear on the user's

terminal, and the desired image is immediately transmitted to the RAMTEK

screen.

The WIMAGEU and WIMAGEL command files load and execute a CAP

assembly language program and an IOC assembly language program. The CAP

program inputs image data from the Bulk Memory in blocks of 512 pixels,

* and scales it to insure that no pixel has a value greater than 255.

This is the maximum intensity level that can be displayed on the RAMTEK

CRT. Since the required scaling factor depends on the maximum intensity

value present in the image, the entire 512 X 512 image must be searched

prior to display. The CAP computes the scaling factor and inputs the
image a second time in blocks of 512 pixels. It then implements the

WRITE IMAGE instruction to send each block to the RAMTEK. A 512 pixel

block represents one "line" of data on the RAMTEK screen. This process

is repeated 512 times to generate the complete image. The IOC program

moves image data from Bulk Memory to CAP memory in blocks of 512 pixels.

Both the WIMAGEU and WIMAGEL command files load the same CAP program.

However, different IOC programs are loaded, depending upon whether the

image is to come from the upper or lower 16 bits of Bulk Memory. The

CAP and IOC assembly language programs are initially executed by

commands from a FORTRAN routine incorporating the PSPIO utility.

(e) WLOOKUP

All image data transmitted to the refresh memory VIA

the RAI4TEK WRITE IMAGE instruction is mapped through a Video Look-Up

Table (VLT) prior to actual CRT display. The VLT defines the functional

correspondence between data values stored in refresh memory and the

actual grey scale intensity that is generated for each pixel. Use of a

36

AFWAL-TR-83-1045

look-up table enables the user to modify a stored image in a predictable

manner, such as enhancing certain intensity levels, suppressing others,
etc. The VLT is physically located in the RAMTEK Controller and consists

of 2048 words, each 13 bits in length. As a physical device, the VLT
has been flexibly designed to serve a variety of possible refresh

memory/display configurations. The specific configuration used for the

MRSP is based on a refresh memory size of 512 X 512 X 8 bits, which

limits stored values to the integer range of 0-255. With this

limitation, only the first 256 locations in the VLT have any practical

significance, and values stored at higher locations are effectively

ignored. The RAMTEK LOAD AUXILIARY MEMORY instruction is used to

transmit values to the VLT. The Controller treats the VLT as an

extension of refresh memory, and has assigned it an address of 8000

(hexadecimal). To use the LOAD AUXILIARY MEMORY instruction, the
* programmer follows the coded instruction with the hexadecimal address of

the VLT, and then a 16-bit word containing the byte count, i.e., twice

the actual number of values to be loaded into the VLT. This sequence is

then followed by the actual values themselves. Intensity values

generated by any desired function (linear, exponential, logrithmatic,

etc.) may be loaded into the VLT. In a practical sense, the values
stored in refresh memory can actually be viewed as look-up table

addresses. For each pixel to be displayed the RAMTEK Controller will

access a specific location in refresh memory, which necessarily contains

some integer number in the range 0-255. This number is then used as a

vector to the VLT. Whatever value is stored at that location in the VLT

becomes the actual grey scale intensity mapped on the CRT. If a

straight linear function is loaded into the VLT (i.e., zero is stored at

location zero, one is stored at location one, etc.) then the intensity

values stored in refresh memory will be exactly reproduced on the CRT

screen. If any other function is loaded into the VLT, some or all of the

values in refresh memory will be modified prior to display. If no

function is loaded (i.e., all zeros in the VLT) then'the entire screen

will remain black (dark) regardless of the values in refresh memory.

To provide a practical high level implementation of the RAMTEK

video look-up table, a VAX command file called WLOOKUP was written. This

command file operates on a previously created FORTRAN-formatted data

k37

AFWAL-TR-83-1045

file containing any 256 point function that the user wishes to load. To

execute the command file from a standard computer terminal the user

simply types @ WLOOKUP FILENAME, where "FILENAME" is the name of a 256

point data file containing the desired function. This causes the video

look-up table in the RANTEK Controller to be directly loaded from the

data file. No prompts appear at the user's terminal, and the data file

is preserved.

The WLOOKUP command file executes a VAX FORTRAN program which reads

the specified data file and sends the values directly to CAP memory VIA

the PSPIO utility. A CAP assembly language program is then loaded which

utilizes the RAMITEK LOAD AUXILIARY MEMORY instruction to send the data to

the look-up table. The CAP program is initially executed by a command

s from a FORTRAN program incorporating the PSPIO utility.

(f) WCURSOR

The RAMTEK cursor appears on the display screen as a

cross with the center element missing. It is located within a 14 X 14

pixel block, and may be positioned anywhere on the screen by means of a

manual joystick control. Pertinent RAMTEK instructions relating to

cursor operation are WRITE CURSOR STATE, READ CURSOR STATUS, and SENSE

PERIPHERAL STATUS. These instructions allow the programmer to
respectively generate the cursor at any desired point on the screen, read

cursor position, and sense cursor status. Use of these instructions at

the bit level is quite complex since the prograinmer must set a prefetch

bit prior to reading cursor status or position, and then clear it before

sending the next instruction. The prefetch bit controls the direction of

transfer on the RAMTEK interface. Once it has been generated

(initialized), the cursor can be moved to any location by means of the

joystick. The joystick provides two modes of operation - TRACK and

ENTER. In the TRACK mode, host processor interrupts are continuously

generated as the cursor is being moved. This enables a program running
in the host processor to dynamically monitor or "track" cursor status and

position. In the ENTER mode, interrupts are only generated when the

joystick operator depresses a momentary action switch. Each interrupt

generated in this manner enables the host processor to monitor cursor

38

AFWAL-TR-83-1045

status and position. In the MRSP configuration, the RAtMTEK host

processor is the CAP; and an assembly language program running in the
CAP continuously monitors cursor status. When an interrupt is generated

in either the joystick TRACK or ENTER mode, the current cursor
coordinates are read, converted to ASCII characters, and sent to the

supplemental ONTEL display. An alpha-numeric message is also generated
which indicates whether the coordinates were generated in the TRACK or

ENTER mode.

To provide a practical high level implementation of the RAMTEK

cursor, a VAX command file called WCURSOR was written. This file enables
the user to initialize the cursor directly from the keyboard of a

standard computer terminal. To execute this file, the user simply types

@i WCURSOR. A message then appears on the user's terminal reminding

him to power up the supplemental ONTEL display and put it in the EXECUTE

mode. When this has been accomplished the user types a carriage return.

The cursor then appears near the center of the RANTEK screen, and is

ready for manipulation by the joystick. In the joystick TRACK Mode, X

and Y position coordinates will be continuously displayed on the ONTEL

screen as the cursor is moved. In the ENTER mode, X and Y position

coordinates will be sent to the ONTEL each time the user depresses the

momentary action switch.

The WCURSOR command file loads the CAP assembly language program

that monitors cursor status and position. This program utilizes the
RAMTEK WRITE CURSOR STATE instructiin to initially generate the cursor,

and then implements the READ CURSOR srATUS AND SENSE PERIPHERAL STATUS
instructions in a continuous loop. The CAP program is initially executed

by a command from a FORTRAN routine utilizing the PSPIO utility.

(g) RAMCLEAR

The RAMCLEAR conand file clears the RAMTEK CRT

screen. To use this file the operator enters @ RAMCLEAR from the
keyboard of a standard computer terminal. No prompts are generated at

the user's terminal, and the RAMTEK CRT screen is immediately cleared.

RAMCLEAR loads a CAP assembly language program which sends a MASTER

39

* AFWAL-TR-83-1045

CLEAR to the RAMTEK Controller. The CAP program is executed by a command

from a VAX FORTRAN routine incorporating the PSPIO utility.

(h) NEGATE

The NEGATE command file can be used to change the

polarity of vector and text graphics currently on the RAMTEK screen. In
normal operation white graphics are displayed on a dark background. The

NEGATE command file will reverse the polarity of background and graphics

so that dark graphics are displayed on a light background. To use this

file the operator enters @ NEGATE from the keyboard of a standard

computer terminal. No prompts are generated at the user's terminal, and

polarity reversal occurs immediately with regard to the currently
displayed graphics. The NEGATE command file loads a CAP assembly

language program which sends a value of 255 (hexidecimal FF) to the

first location of the RAMTEK video look-up table. This location

controls the polarity of displayed graphics. The CAP program is executed
by a command from a VAX FORTRAN routine incorporating the PSPIO utility.

c. Summary

The VAX command files described in the previous sections

represent a high level implementation of the basic bit-level RAMTEK

instruction set. They are easy to use, and can be executed from the

keyboard of a standard computer terminal. Each file is designed to

operate an an independent module, and the user can execute them as

required in any sequence. If, for example, the user wishes to analyze a

variety of look-up table enhancements on an image stored in bulk memory,

he can successively invoke the WLOOKUP and WIMAGE command files. Data

file inputs for WLOOKUP are easily created with VAX FORTRAN. Similarly,

it is a straightforward matter to overlay graphics and/or a cursor on a

displayed image using the WTEXT, WVECTOR and WCURSOR command files. The

WPLOT command file is especially handy for plotting functions in many
types of analysis work. Normally the original analysis routines are

written in VAX FORTRAN, and only a few additional statments are required
to save the results in data files. These functions can then be plotted

on the RAMTEK display with a simple invocation of the WPLOT command file.

Finally, the RAMCLEAR file is included as a matter of convenience. It

& 40

AFWAL-TR-83-1045

enables the display to be cleardd by a simple keyboard command. However,

the same function could be accomplished by walking over to the display

and depressing the MASTER CLEAR switch.

2. DEMONSTRATION PROGRAM

To demonstrate the signal processing capabilities of the MRSP as a

complete system, a two-dimensional Fast Fourier Transform (FFT)

processing operation was developed. The FFT was selected because it can

be directly related to many practical signal processing applications.

For example, one approach to generating very high resolution spatial

radar images utilizes FFT processing in two dimensions (range and

azimuth) to perform pulse compression and doppler phase compression

respectively. FFT's are also useful in spectrum analysis operations to

specify the response characteristics of various filtering functions.

The demonstration program utilized all components of the MRSP

system. Actual two-dimensional FFT computations were performed by the

VAP. The CAP provided data scaling and control of the output display

system, which was used to verify final results. The general purpose host

computer was used to generate the initial input function data, and also
the sine/cosine coefficient table required for FFT computations. The IOC
provided control of the bulk memory, a multi-faceted task which included

the acceptance of initial input data from the host, the transmission of

intermediate data to the VAP, and the transmission of final output data

to the CAP and RAMTEK.

Two versions of the two-dimensional FFT were written. The first

version was a 16 X 16 point transform. This was later expanded to a 512

X 512 point transform when the final program was written. The program

structure is esentially identical for both versions. Only some minor

coding changes are .required to modify instruction parameters which

designate the number of points on which to operate. One advantage of
initially working with a 16 X 16 point transform is that only 256 data

memory locations are required. This enables the entire data memory to be

easily printed on a a single sheet of paper or displayed on the terminal

scregn for a quick inspection during program development. By contrast,

41

AFWAL-TR-83-1045

a 512 X 512 point transform requires 262, 144 memory locations, and only

small portions of it can be displayed and inspected in a single glance.

The demonstration program generated a three-dimensional pulse of

constant amplitude as the input function. The two-dimensional Fourier

Transformation of this function should be a three-dimensional Sine X/X

surface, with the main lobe positioned in the center of the surface. To

verify the theoretical results, the output was presented in intensity

modulated form on a 512 X 512 picture cell (pixel) cathode ray tube

(CRr) monitor.

a. Function Description

A two-dimensional FFT is developed from a series of one-

dimensional FFT's. A one dimensional FFT is a function of one variable,

and it operates on an input function of N points, where N is the FFT

length. N is usually specified as a power of 2. Figure 5(a) is a pulse

of constant amplitude (A), which is used as an input function to a one-

dimensional FFT. The pulse width is X points, and the total input

function length is N points. When a discrete one-dimensional FFT and

detect operation is performed on a pulse of constant amplitude, the

result is a Sine X/X function (Reference 1). This is shown in Figure

5(b). The number of sidelobes is determined both by the number of

samples in the pulse and the total number of samples in the FFT. Figure

6 shows the results for a pulse width of 16 samples and a total FFT

length of 512 samples.

In a strict mathematical sense, a one-dimensional FFT is a

function of only one variable. However, two real dimensions (amplitude

and length) are required to describe the input function (pulse) on which

the one-dimensional FFT is to operate. Likewise, two dimensions are

required to describe the Sine X/X output. For computer implementation,

it is convenient to represent the input function length dimension with a

one-dimensional memory array of N locations. The other real dimension

(amplitude) can then be determined by assigning values to various

locations in the array. Any desired input function to a one-dimensional

FFT can be described in this way. For the pulse of Figure 6, the first

16 array location have a value of A, and the remaining 496 locations

have a value of zero.

42.

AFWAL-TR-83-1 045

U

U-U

tamJ

AFW4AL-TR-83-1 045

00

kn-

Go.
w

wlf
cla

L&SA

Is.1

Go - n

a. a. CV

441

I "-Am

AFWAL-TR-83-1045

A one-dimensional FFT can be expanded to a two-dimensional FFT by

making it a function of two variables. In this case, the input function

on which the FFT is to operate would be described by three real

dimensions (length, width, and amplitude). The two-dimensional pulse of
Figure 6 would then become a three-dimensional pulse. This is

represented by the rectangular solid of Figure 7(a). A three dimensional

function can be described by a two-dimensional computer memory array of

N X N locations to represent length and width. The amplitude dimension

is then represented by assigning values to the various array locations.

A two-dimensional FFT is implemented in two steps, each consisting

of a series of one-dimensional FFT's. The first step is to compute N

separate one-dimensional FFT's along one axis of the input function array

(i.e., either the rows or the columns). The second step is to compute N

* more separate FFT's along the other dimension of the input array. All

values in the input array are complex, i.e., they have a real component

and an imaginary component. Each of the FFT's in the second step is

followed by a detect operation (.IREAL= + IMAGINARYZ) to arrive at the

final result. For this demonstration program, the input function was a

three-dimensional pulse of constant amplitude, and the desired output

was a three-dimensional Sine X/X function similar to that of Figure

7(b).

b. IMPLEMENTATION

The basic VAP FFT instruction is a one-dimensional operation

of N points. For the demonstration program, N is chosen to be 512

points. This is purely a matter of convenience, and is based on the fact

that the available RAMTEK display system is configured for 512 X 512

pixels. The VAP can handle any FFT length up to 4096 points. The two-

dimensional FFT will be developed in two steps as previously indicated.

Each step consists of 512 one-dimensional FFT's of 512 points each.

The input function is a three-dimensional pulse of constant

amplitude. It is represented in computer memory by a 512 X 512 element

complex array. The imaginary component of all elements in the array is

set to zero. The real component for a 16 X 16 block of elements in the

45

AFWAL-TR-83-10
4 5

- I-

a" L." • a

I. a

LaL

I-

In46

00

u vnI=
.

C4

..' . L .

431

4 -

AFWAL-TR-83-1045

near corner of the array (i.e., rows 1-16 and columns 1-16) is set to a

constant amplitude value of 1400. This function is generated in the VAX

11/750 host computer and transmitted to bulk memory via IOC Port #4. A

262, 144 element block of bulk memory is reserved for this purpose in the

IOC program. The VAX then generates the 512 point sine/cosine

coefficient table required for FFT computations. This is a complex data

table in which the cosine coefficients constitute the real component and

the sine coefficients constitute the imaginary component. The table is

transmitted directly to VAP Data Memory #5 via the PSPIO support

software utility routine. At this point the FFT operations commence.

The IOC transmits a 512 element block of data to the VAP via IOC Port

#5. The VAP computes a 512 point one-dimensional FFT and returns the

results to the same locations in bulk memory via Port #0. The bulk

memory address counter is appropriately updated and the next 512 element

block of data is sent to the VAP, processed, and returned. This

sequence continues, with the IOC "ping-ponging" between Port #5 and Port

#0 until all 512 blocks of 512 elements each have been operated on by

the VAP. The first step of the two-dimensional FFT operation has then

been completed. All 512 rows of the input array have been processed.

At this point a "corner turn" is implemented in the IOC. The second step

of the operation requires all 512 columns to be processed in the same

manner as the rows. The "corner turn" involves the generation of a

different sequence of bulk memory addresses. Instead of accessing the

data in sequential blocks of 512 as was done for the rows, the bulk

memory address counter is now incremented by 512 after each memory

access. When a complete column has been accessed, the memory address

counter is decremented by 262, 144 and then incremented by one. This

sequence continues until all 512 columns have been operated on by the

VAP. The IOC "ping-pongs" between Port #5 and Port #0 as before. At

this point a complete two-dimensional FFT has been computed. However, to

derive the desired output (three-dimensional Sine X/X function), a

detect operation is required after the second group of FFT's. This

operation is performed in the VAP using the "Detect" instruction. The

Detect instruction impl.ments a :ory fast approximation of

* REAL + IMAGINARY2 . This operation could be performed in a separate

process after the FFT's by moving the transformed data from bulk memory

to VAP and then back to bulk memory again via Port #5 and Port #0 as

AFWAL-TR-83-1045

before. However, it is more efficient to combine the detect operation

with the second set of FFT's. In this implementation, each of the 512

column FFT's is followed by a detect operation before the data is

returned to bulk memory. This was the approach used in the demonstration

program.

After the FFT/Oetect operations have been completed, the IOC moves

the data from bulk memory to CAP for presentation on the RAMTEK display

system. This is accomplished sequentially in batches of 512 elements via

IOC Port #3. The CAP scales each group of data as it is received and

transmits it to the display CRT as a 512 element "line". When all 512

lines have been transmitted, the display screen is filled. The screen

contains 262, 144 pixels, so there is a one-to-one correspondence with

the transformed data in bulk memory. In addition to data scaling, the

CAP has some other responsibilities. It generates and transmits the
grey scale lookup table to the RAMTEK display system. It also processes

the interrupts and controls the "handshaking" operations required to

increment the RAMTEK line counter. The lookup table determines the

intensity modulation on the RAMTEK display. For this demonstration

program, a linear table is used which has values from 0 - 255. A pixel

value of zero will be displayed as black, and a pixel value of 255 will

be displayed as a bright white. Other pixel values will result in

intermediate grey levels. The data scaling operation performed in the

CAP insures that all pixels transmitted to the RAMTEK display will have

values in the range 0 - 255. The final output display presentation is

an intensity modulated Sine X/X function similar to Figure 7(c).

Detailed listings of the VAP, CAP, IOC, and VAX programs for this

demonstration are incorporated as Appendix A.

Only one VAP is required for the demonstration program which has

been described, although the MRSP is actually configured with two VAP

units. These are termed VAPI and VAP2. The listings in the appendix

are for VAPI. The same program was run in VAP2 with identical results.

To use VAP2 a few coding changes are required in the IOC and VAX host

programs. IOC Port #6 and Port #2 are used to communicate with VAP2,

while Port #5 and Port #0 were used to communicate with VAPi. Also,

different IOC flags are used to control the VAP2 Input/Output buffers.

48

AFWAL-TR-83-1045

The VAP1 and VAP2 programs themselves are, of course, identical. A one

line change is required in the host VAX FORTRAN program to send the

sine/cosine coefficient table to VAP2 rather than to VAPI. No changes

are required in the CAP program to display VAP2 processed data.

Finally, it is worth noting that some cautions regarding amplitude

scaling should be observed when programming FFT operations in the VAP.

The VAP implements fixed-point integer arithmetic. When performing

complex number operations, it treats the real and imaginary components as

individual 16-bit two's complement quantities. Values for each

component are thus limited to a dynamic range of -32,768 to +32,767. If

saturation is allowed to occur in either the positive or negative

direction, inaccurate or indeterminate results will occur. This is the

programmer's responsibilitity to prevent, and no warning messages are

generated. When contemplating FFT operations, it is recommended tnat the
programmer perform a rough scaling analysis to estimate the maximum

amplitudes to be expected. The FFT instruction is performed in stages,

and amplitude values increase (accrue) with each successive stage. The

number of stages performed is directly related to the total number of

points in the FFT (previously denoted as N). The value of N is limited

to a power of 2, and the number of stages is the actual exponent of 2.

In the demonstration program, for example, each one-dimensional FFT is

512 points long. This is equivalent to 29. Therefore, 9 stages are

implemented for each one-dimensional FFT. The FFT instruction format

allows each stage to be individually scaled. When a stage is scaled, all
amplitudes are divided by a factor of two. Returning to the demonstra-

tion program, it will be recalled that the initial three-dimensional

input pulse was set to a constant amplitude of 1400. The length and

width dimensions were 16. The actual pulse thus consisted of 256 points

of amplitude 1400. All other points in the input function were set to

zero. From (Reference 1), it is noted that the maximum value to be

expected from the Fourier Transformation of a constant amplitude pulse is

equal to the amplitude of the pulse times the total number of points in

the pulse. For the demonstration program this is 256 X 1400 a 358,400.

Since this value is much larger than the saturation level, scaling is

required. In this program, the last 4 stages in the second set of FFT's

were scaled The overall effect was to reduce the maximum expected

49

AFWAL-TR-83-1045

amplitude by a factor of 16. There are no fixed rules for determining

what stages should be scaled. Intuitively it would appear better to

scale the later stages in an FFT because larger values have accrued.

Scaling smaller values in the early stages may cause unnecessary

distortion to be carried through the entire process. Also, it appears

that greater accuracy could be achieved by utilizing as large a portion

of the dynamic range as possible without actually allowing saturation to

occur.

c. TIMING CONSIDERATIONS

The VAP has sufficient hard-wired arithmetic to perform a full

complex butterfly multiply and add in one clock cycle. A VAP clock

cycle is 100 nanoseconds, or 0.1 microsecond. The butterfly operation is

the b-sic computation requirod for FFT implementation in the VAP. As

S previously indicated, the FFT is performed in stages, where the number of

stages is an integer exponent of 2. The number of clock cycles required

for the VAP to compute a complete FFT is specified as (N/2 + 3) X

(NUMBER OF STAGES), where N is the total number of points in the FFT. A

512 point (9 stage) one-dimensional FFT would require 2331 clock cycles.

This equates to about 233 microseconds. It is interesting to compare

this computation time with that of a general purpose computer. A typical

medium scale (32-bit) machine can implement a 32-bit integer multiply in

6.4 microseconds, and a 32-bit integer add in 0.4 microseconds. The

time required for this machine to compute a complete 512 point FFT would

depend on the specific algorithm implemented. One popular technique is

the method of "successive doubling" (Reference 1). This technique

divides an N-point transform into two parts, and computes two N/2 point

transforms. The normal implementation limits N to a power of 2, and

performs the computation in stages, where the number of stages is the

exponent of 2. The number of multiplies required for this technique is

(N/2) X (NUMBER OF STAGES), and the number of adds is N X (NUMBER OF

STAGES). Using this particular algorithm and the above instruction

times, a typical general purpose machine would require 16588

microseconds to compute a 512 point FFT. This is approximately 71 times

* slower than the VAP. The ratio remains about the same if the FFT size is

increased to 4096 points (12 stages), which is the largest that can be

50

AFWAL-TR-83-1045
I

handled by the VAP. Assuming the ratio to be approximately valid, a

complex signal processing problem requiring i0 seconds of VAP time would

use 710 seconds or about 12 minutes on a typical general purpose machine.

When making timing comparisons, it is always difficult to calculate

the execution time of a series of VAP instructions because the

possibility of instuction overlap exists. This will decrease the actual

execution time. Also, a general purpose machine normally operates in a

time-shared environment, and there can be considerable variation in

response time due to resource sharing and to system overhead. The

estimates for a general purpose machine include only the theoretical FFT

computation time, and do not include the overhead of moving data into and

out of the various memory arrays. For comparison purposes, the VAP has

an effective memory access time of 100 nanoseconds, while a typical

general purpose machine has an effective memory access time of about 300

nanoseconds. Thus the VAP is about 3 times faster in this regard. The

memory access factor becomes more significant with larger FFT's, and the

overall effect is to significantly improve the VAP speed advantage.

3. PROGRAM FOR VERIFICATION OF DAG OPERATION

Verification of the Differential Address Generator (DAG) operation

was obtained by programming the MRSP using information and an example

provided by Westinghouse. The program implemented.is a two-dimensional

interpolation.

Verification required the use of three of the MRSP components:

the VAP, the IOC, and the CAP. The VAP was used for the arithmetic

operations necessary for the interpolation. The IOC was used to hold the

input data, and to transfer the necessary data to the VAP for

interpolation. Data for the DAG was provided by the CAP. Normally the

CAP would dynamically create the necessary data for the DAG. In this

case the CAP just transferred the previously calculated data to the DAG

and provided operational control of the VAP and IOC. Also, the interpo-

lation was accomplished in VAPi and then accomplished in VAP2.

51

* AFWAL-TtR-83-1045

a. Functional Description

The DAG may be used to generate addressing for interpolations

where the output (resampled) vector is linear or quadratic in relation

to the input data. However,. the DAG cannot be used where the slope of

the output in relation to the input is not strictly increasing or

strictly decreasing. Other applications of the DAG are possible, but

they will not be discussed here.

Structure of the DAG consists of two relatively simple

arithmetic units, AMl and AU2. These are used to generate values which
may be sent to one, two, or three double buffered tables. These tables

are the Address Offset Table (AOT), Pointer Table 1 (PT1), and Pointer
Table 2 (PT2). Values in the pointer tables are used to address VAP

data memory locations; and values in the AOT are used to address the

IOC bulk memory locations. Since the MRSP contains two VAPs, there are
two double buffered pointer tables for each yAP. Words in the DAG

register file (RF) determine which VAP will receive the pointer table

values.

Inputs and configuration of the DAG are specified by the RF.

The RF contains a control word, table looping values, AUl input values,

AU2 input values, and other control values. Determination of which

values will be read by the DAG is provided by the control word. It also
determines which tables will receive values.

Since the tables are double buffered, this allows very
efficient use of the tables and fast access times. While one part of a

table is being accessed, the other may be loaded by the DAG. This

provides minimal restraint in table usage.

b. Program Operation

The program interpolates a 6 point vector from 19 input

data vectors. Relation of the output to the input is linear, and the
distance between output samples is constant. The operation involves an

interpolation of points on the output vector from input data points in

the vertical direction, and an interpolation of the desired output

j 52

AFWAL-TR-83-1045

locations from the previously obtained points (resanpling along the

output vector).

In order to do this, four vectors are taken from the input data.

These vectors consist of points that are one element above and below the

output, and points that are 2 elements above and below the output. A

weighted average of these values is used to form points along the output

vector. Next, points that are 1 and 2 elements to the right and to the

left of the desired output points are extracted. A weighted average of

these points determines the desired output point values.

The first part of the interpolation is performed by extracting four
vectors from the IOC bulk memory and passing these to the VAP. The VAP

will weight each vector and add them together to form points along the

output vector. The second part of the interpolation is performed by

* extracting four vectors from the VAP data memory which consist of points

from the previous interpolation results. These will be weighted and

summed in the VAP to obtain the desired output vector.

The values of the weights are loaded into the VAP immediately after

the VAP program is loaded. This includes the weights necessary for both

interpolations.

c. DAG Requirement

Five DAG RF loads are required to implement the interpolation.

The first load is used to create the values for PT1 and AOT. Loads

number 2 through 4 are used to create AOT values. The fifth load creates

values for both PT1 and PT2.

Values from the first PT1 load are used to access the weight

values used in the first part of the interpolation. AOT values from the

first load are used to transfer the vector consisting of all the points

that are one element below the output vector to the VAP. Both of these

tables are obtained from the first DAG RF load.

53

' - I i - - i1'

AFWAL-TR-83-1045

The second DAG RF load generates AOT values to transfer the vector

of all points 2 elements below the output to the VAP. AOT values are
also generated for the third and fourth RF loads, which transfer the

vectors for 1 point above and 2 points above the output to the VAP. The
values loaded into PT1 from the first RF load are accessed four times,

once for each vector. However, four different weight sets in VAP data

memory are accessed by the pointer table (PT1).

The fifth DAG RF load is used to generate both PT1 and PT2 values.
These are used to extract and weight the vectors for the second part of

the interpolation. PT2 is used in extracting the vectors and PT1 is
used in accessing the weight values. Since both pointer tables may be

accessed at the same time by the VAP, this allows very efficient

operation. However, this creates some operational constraints, as the
VAP must use PTI in memory reference descriptor 1 only, and PT2 must be

used in memory reference descriptor 3 only.

d. Considerations

The DAG provides an extremely useful tool in programming

interpolations and related functions. Due to its required understanding

level and lack of instructional material however, it is very difficult to

program. This in part is due to the newness of the DAG component part

of the MRSP. The logical conclusion is that the DAG is a very powerful

tool, but its usefulness is currently limited by the support literature

and lack of knowledge in the area of its uses.

4. SUPPORT SOFTWARE MODIFICATIONS

An on-going objective of the MRSP Integration Facility if to

"streamline" the contractor-provided support software package whenever

practical by incorporating some of the unique capabilities of the VAX

11/750 host computer. As previously indicated in Chapter 3, the support

software package contains the modules required to assemble, link, load,
debug, and execute useful programs for the MRSP. The support software is
general in nature, and intended to be relatively independent of the

user-provided host computer. However, some of these routines can be made

to operate more efficiently by incorporating the unique features of a

particular host.

54A _ _

iA

AFWAL-TR-83-1045

Soon after delivery of the MRSP hardware, two particular support

software operations emerged as obvious candidates for "streamlining".

One of these was the tedious procedure required to assemble.a CAP source

program, and the other was the time-consuming BINGEN procedure, which

converts an assembled CAP, VAP, or IOC program into a loadable binary

module. Initial assembly of a CAP program requires three separate

invocations of the File Manager support routine, several intermediate

commands to supply data to and exit from the File Manager, an invocation

of the linker/loader, and several additional 'ommands to generate a hard

copy of the source listing. This sequence of commands is difficult to

remember, and frequently results in errors. By contrast, the procedure

for generating a VAP or IOC assembly file and source listing is much

simpler, essentially requiring only one command. Once a CAP, VAP, or IOC

program has been assembled into the proper ASCII-octal format, the

BINGEN routine is invoked to generate a binary module that can be loaded

into the MRSP. The BINGEN routine supplied by the contractor was

designed to operate on a 16-bit machine, such as the Digital Equipment

Corporation PDP-11 Series. BINGEN will execute on the 32-bit VAX in

"Compatibility Mode", however, it is relatively slow and inefficient.

For example, BINGEN requires approximately 3 minutes to generate a binary

load module from an assembled VAP, CAP, or IOC ASCII-octal format file.

In order to speed up the binary generation process, a native VAX

routine called FASTBIN was developed. This routine completely bypasses

BINGEN, and utilizes some of the unique capabilities of the VAX/VMS

Operating System to derive binary data directly from an assembled ASCII-

octal format file. As a result, FASTBIN generates exactly the same load

module as BINGEN, but requires only about 3 seconds. A preliminary users

manual has been developed for FASTBIN, which is included as APPENDIX B.

In order to "streamline" the CAP assembly process, an interactive

command file called CAS was developed. CAS not only assembles a CAP

source file, but at the programmers option, automatically invokes FASTBIN

as well. In essence, CAS requires only one command to implement all the

steps necessary to generate a loadable binary module from a CAP source

program. in addition to FASTBIN, CAS incorporates the CAP loader,

deassembler, and translator as options, and may thus be tailored to

55

0'*.

AFWAL-TR-83-1045

perform a variety of operations. To use CAS, the programmner simply

enters the name of the commnand file (CAS) followed by the optional
parameter. A prompt then appears requesting the name of the CAP source

file. Once this has been entered, the *emainder of the procedure is

totally automatic. The CAS conmmand file has been incorporated as

APPENDIX C.

5. CONCLUSIONS AND FUTURE ACTIVITIES

This interim report documents activitfes of the MRSP Integration

Facility 'from project initiation February 1981 through December 1982.

The actual MRSP hardware was delivered in March 1982. The primary

accomplishments during this period include the development of a software

package to integrate the output display system, some preliminary test

programs to demonstrate the processing power of the MRSP, and several

significant in-house improvements to the MRSP support software.
Additionally, AFWAL/AARM personnel have gained a high degree of

experience and programmuing proficiency with this relatively complex

system.

The MRSP is basically a prototype machine. Experiments conducted

during the course of this effort have verified that it has the capability

to perform extremely high speed arithmetic operations on large blocks of

data. In fact, the VAP operates most efficiently when the largest

possible array lengths are used. Additionally, the MRSP has proven to be

quite reliable from a maintenance standpoint.

The MRSP was purchased primarily to perform signal processing

experiments relating to the generation and analysis of radar image data.
However, very little work with actual image data was accomplished during

the reporting period, primarily because of disk storage limitations on
the VAX 11/750 host computer. A typical radar image consisting of 1024 X

1024 complex picture cells (pixels) would require about 4.3 megabytes of
storage. Throughout most of the reporting period, the VAX was

supporting several programs in addition to the MRSP, and could not

* conveniently acconmmodate such large files. Recently however, two large

capacity disk drives (300 megabytes each) have been added to the VAX.

56

AFWAL-TR-83-1045

These will permit storage of large image files. During the next

reporting period, some representative signal processing operations,

including frequency filtering and detection, will be performed with

actual radar image data to demonstrate the utility of the MRSP. Also
during the next reporting period, a significant portion of the effort

will be directed toward the Differential Address Generator (DAG)
capabilities of the MRSP. T! a DAG is the F4RSP hardware option that has
the capability to generate high speed non-consecutive address sequences
for the Bulk Memory or VAP data memory. This device has the potential to

be extremely useful for certain nonlinear radar oriented interpolation
operations. However, throughout most of the period covered by this
report the DAG was plagued with persistent subtle hardware anomalies that
inhibited its performance. A recent maintenance visit by the contractor

has apparently corrected most of these problems. One operation of

* particular interest with regard to the DAG is the resampling of certain
radar data from a polar format to a rectangular format, from which it can
be more conveniently processed. The polar/rectangular resanipling

operation typically places a very high computational burden on a signal
processor, and is usually accomplished at less than "real-time" rates.
However, by virtue of the DAG, the MRSP has the potential to perform this
operation much faster. During the next reporting period experiments
will be designed to demonstrate this capability.

57

AFWAL-TR-83-1045

APPENDIX A

SAMPLE PROGRAM LISTINGS

59

i--- - m

AFWAL-TR-83-1045

SAMPLE PROGRAM LISTINGS

1. FFTDEMO.COM

This procedure executes a series of VAX/VMS Operating System level

commands for a two-dimensional FFT demonstration.

2. F2VAP.VAP

This is a VAP assembly language program that performs computations

for a 512 X 512 two-dimensional FFT.

3. F2DIOC.IOC

This is an IOC assembly language program that controls the Bulk

* Memory transfer required for a 512 X 512 two-dimensional FFT computation

by VAPi. It also accepts input data from the VAX and transmits processed

results to the CAP.

4. F2DCAP. CAP

This is a CAP assembly language program that scales processed data

and transmits it to the RAMTEK Display.

5. F2DVAX.FOR

This is a VAX FORTRAN program that generates a 512 X 512 point

input function for FFT operations. It also generates a 512 point

sine/cosine coefficient table for the basic FFT computation.

6. IOCEXE.FOR

This VAX FORTRAN program uses the PSPIO utility to execute an

operational program that has been loaded into the IOC.

7. CAPEXE.FOR

This VAX FORTRAN program uses the PSPIO utility to execute an

operational program that has been loaded into the CAP.

60

AFldAL-TR-83-1 045

56
a

aa

.3 z

0 .4 09
I 0* 54 t-U

4a 0 .w 0
* cca Ic u 1:

0 a C a. d -
- 4 je "A 44 z

5 4514 .4

x ul r" I-I dCa
0 1 W.4

u I0 dc -Cl E" z0
CL. .14 "4 u

M54 0 O tol 0a 114I.
z 4 cc z IAC C A. cc

:"all;s 0 2a a 0-
ifi it)4U 1

4" u z Cal
0 w z 44 4 :11 54 W d

x4 X a o sC 0 110 20 -C zp .c a

V3 1 = j % d

4U 0 a . :4 1 a. t

.4u.4 K; =a 3

-~ I 4U ta m.

a 0 a.a 0 00 0 qa

alo00oa .4 1151 Ca 0 1 4O=Of CO=1. -o I
.*o000O zooo c CIO 00c .4 0.04m - 0 0

M I n% * 4 7 0. -f Q~f Gir CIab 4 1s'1f VP 11

145 N11 0 ' N 4* CalCN

1461

AFWAL-TR-83-1045

Z. F2DVAP.¥AF

1oo TITE 2VAP
200
300 * . THIS PROGRAM PERFORMS A TWO-DIMENSIONAL FFT COMPUTATION&
400 * TWO SEPARATE PASSES THRU THE VAP ARE REQUIRED. EACH PASS
500 PROCESSES 512 BLOCKS OF DATA IN WHICH EACH BLUCK CONTAINS
600 512 PIXELS.
700
800 DEFINE MEMORIES ANDPARAMETERS
900
1000 INEND cOU 2 t SIT SET TO. IhOICATE END OF TRANSFER
1100 BRN9 EaU %
1200 Vol EQU a * VIDEO OUTPUT 2 QIV TO MEN V
1300 V02 LOU 9 VIDEO OUTPUT 2 EQUIV TO MEN 9
1400 V11 LOU 0 .- VIDEU INPUT I 9QUIV TO MM 0
1500 W12 EOu 7 VIDEO INPUT I CQUIV TO MEN 7
1600. NOEND EQU. 0 * BIT NOT SET - TRANSFER NOT COMPLETE
1700 INC EaU 1
1800 K DS 45O512
190.~. 90 KI D5 M5,0513
2000 MIDATA DS M1,00 w VAP MNM I STARTS AT LOCATION 0
2100 M2DATA DS M2,00 , VAP MEN 2 STARTS AT LOCATION 0
2200 M3DATA DS K3,00 , VAP MEN 3 ' N

2300 . 4DATA 05 M4,.00 . VAP HEN 4 " " "
2400 M5COEF DS M5,00 V YAP MEN 53' " "
2500 M60ATA DS 96.00
2600 MIUP 0 11,O512
2700 12UP 05 M2,0512
2800 M3UP O M3,0512
2900 M4UP 05 M4,0512
3000 ASUP 0 M5,0512
3100 M6UP . DS 6,0512
3200
3300 . . CLEAR DATA HENS S MOVE IN DETECT CONSTANT
3400
3500 CLRM NSO24:M14;M2:M3;M4M4516
3600 START KOVLCM Ni;K
3700
3800 . MOVE IN 512 POINT SINE/COSINE. COEFFiCIENT TABLE FROM HOST
3900
4000 MOEVCM N512;N5COEF,,BRN9
4100
4200 . . PERFORM FIRST PASS FFT COMPUTATIONS
4300
4400 LOOP MOVERO N512;VI1I;MDATA
4500 MOVERO N256;:MIDATA 256;M2DATA
4600 dp s*1;1
4700 FFT N256;M1SCEFMIDATA;M2DATAM3DATAIM40ATA;9;9;j
4600 MUVERO N2561N30ATA,p81M1DATA
4900 MOVERO N256M4DATA, .8;MIDATA+266
5000 MOVERO N512;M1DArApVOl
5100 REP LOOPIVS12
5200
5300 . , PERFORM SECOND PASS FFT COMPUTATIONS
5400
5500 .OUP2 MOVERO N512VII;MZDATA
5b00 MOVERO N256;:MDAZA 2S6;M2UATA
5700 bP S.*11
6800 FFT N250;MSCOEF 41OATA;u2LATA;m3DAZA;M40ATA;9lg9l;07
5900
6000 P . 'ERFORM DETECT OPERAriOft ON PRUCESSLU DATA

6100 ,

j . 62

AFWAL-TR-83-1045

2. F20AP.VAP (Contimed)

6200 OCT N256IKO10OM3DATArS;DM1DATA
6300 ULT ft256;K0;40ATA,,SuM2DATA
6400 MOVERO N256fM1DArA:M2DATA+256
6500 MOVERO N512;M2DATA;VU1
6600 REP LO0P2:V512
6700
6800 HALT
6900 END
7000
7100 OAME ELOU 016 . UATMEX SELECT CODE 15 16(OCTALI
7200 $TADDR EQU 0 , STARTING ADDRESS FOR MACRO PROGRAM
7300 & DATMEM IS AT LOCATION 0
74u0 MACRO LOU 00 * MACRO PROGRAM SELECT CODE IS 00
7300 XQT EQU 1 * EXECUTE bIT IS SET WITH A 1
7600 032 EQU 1 . 32 BIT WORD TRANSFER IS SET WITH 1
7700
7800 EXECUTE' VAP PROGHAM
7900
8000 FWABC STADDR;;MACROXQT
8100 FWAdC STADDR,1;;DANtM,,D32
820i)

8300 DETECT CONSTANTS
8400 0032405,0077777,.0100000,0100000
8500 END

63

AFWAL-TR-83-1045

3. F2DIOC.IOC

0 TITLE F2UIOC
200
300 . . THIS PROGRAM SUPPORTS A 512 X 512 TWU-0IMENSIONAL FFT
400 * COMPUTATIOk wHICH IS PERFORMED BY VAP 01. PORT 4 ACCEPTS
500 * INITIAL DATA FROM HOST IN ULOCKS OF 512 PIXELS. PORTS
600 * 5 $ 0 OPERATE IN PING-PONG FASHION TO MOVK DATA INTU AND
700 e OUT OF VAP IN BLOCKS-Of 512 PIXELS. TWO PASSES THRU VAP
800 9 ARE NECESSARY FOR A TWU-OIMLNSIOMAL FFT. A CORNER-TURN
900 . .15 REGUIRED IN BULK MEM FOR SECOND PASS, PORT 3 SENDS THE

1000 w PROCESSED DATA TO CAP IN BLOCKS OF 512 PIXELS.
1100
1200 SCCTR 1,0
1300 BUFF RES 262144
1400 EOT EQU 1
1500 OUT EGU 1
1600 IN EaU 0
1700 LU EQU 1018
1900 Lb EaU 1005
1900 UU Eou Ii1B
2000 UL EUU 11DB
2100 OUMFLG EQU 9
2200 P4DONE EQU 6
2300 P5DONE EOU 8
240o POHOLp Eo s

2600
2700 PRIO 4,5.0.3.1.2,6,7
2800
2 0 .. UNUSED PORTS
3000 PORT 1
3100 PORT 2
3200 PORT 6
3300 PORT 7
3400 HOLD JUMP HOLD
..a500
3600 PORT 4
.3700 SkTaA BUFF-IIN
3800 rOUP4 NPOFs 1,1,LL
39QO INPOFS O.1.LU
4000 REPEAT LOOP4,512,1
_Uoo REPEAT LOUP4.512.2
4200 SETF P4DONE
_t300 WAIT DUMFLG.OUT
4400 .

_4. Q 0 PORT 5
4600 *AIT P400NE,OUT
47u0 SETBA BUFF-1
4800
4900 * NOTE: FLAG 14 CONTROLS VAP *I INPUT dUFFLRSuOD

_._1 00 ioO0P5 SLTF 14
5200 DKLAI 8
3 .UUiOF3 1.512.0..E0T
5400 CLRF 14
550u D)ELAY d
560u .TY P5DUNL
.5700 sAIT POODNE
5800 RLPLAT LUPS,512,1

60uU . . CURNEH-TURW FOR CCONu PAbS rHRU VAP
6100 SET bUf -5L2

64

U AFMAL-TR-83-1 045

3. M2IXC.=O (Continued)

6200 LOOPSA SETF 14
6300 DEL.AY d
6400 0UTOF8 512,512,0,,E0T
6500 CLAF 14
6600 DELAY 8
6700 INCBA 1

6.QQQD6CbA 262144
6900 SCTF P5U0frE
7000 WAIT PODURE
7100 REPEAT I.OOPSA,512,1
7200 WAIT OUAFLG
7300
7400
7500 PORT 0
7600 SLTBA BUFF-1.IN
7700 LOOPO WAIT PSUONE
760Q
7900 . NOTE: rLAG 12 CONTROLS YAP 91 OUTPUT BUFFER
0020

8100 SETV 12
8290 UELAY b
8300 L!4P4rS 1,512,0,,COT
8400 CLR&1 12
8500 DELAY 8
.L601 -SETF PODOME
8700 REPLAT LOUPO,512,1
8800
8900 .. CORNER-TURN RETURNS DATA TO SAME LOCATLONS ur BULK NM1
9000 SETBA BUFF-512
9100 LOOPOA WAIT P50ONE
9200 SmTF 12
9300 DELAY 8
9400 INPOrs 512,512,0,,EOT
9500 CLXF 12
9600 DELAY 8
9700 LNCbA I
9800 UCCBA 262144
9900 SETF POONSE

10000 RIEPEAT LOOPOA512#1
I0100 SET? IP0toLo
A19Q WAIT DUMFLG
10300

10500 PORT 3
A0600 PAIT POIIOL.O.OUT
10700 SETBA suFF-t
1jQ000 CdOOW3 CLiAV 1b
10900 LOIP.3A DELAY d
11000
Tll00 MU NTE: UNLY b4 91XELS/TRA4SFb.R FUR 3AA MHaiN
-11200 * fLAG 18 COMTR9LS THIS TRANSFER
11300
;11400 LUTOFS-I.64.LL..EUT
11500 ALPL.AT LUUP3A,7.,2
ladoo 0u.LAY a
117U0 UUTUirb 1qo4,6L.,1d,cdJT

1190 .0 Ki&ihAT L.00P3,512.L
120~00 1IJLD3 JUMP~ dIU403

65

AFWAL-TR-83-1045

4. F2DCAP.CAP

100 iSA ASSkMBLe.F2DCAPF2OCAP 50

200 .
300 . . THIS PKOGRAM ACCEP S UNSCALED IIAGE DAZA IN BLOCKS OF
400 , 512 PIXELS FROM BULK MEN THRU OMA CHAN 01. IT SCAES
500 * THE DATA AND SENDS IT TO RAMTLK THRU DMA CHAN 16. A

600 TOTAL Of 512 BLOCKS ARC REQUIRED TU F1IL THE RANTEK
700 UISPGAY. A LINEAR 6OOKUP TABLE IS ALSO SENT TO RANTEK.
800

900 . DEFINE RLGISTERS & PARAMETERS
1000 Ri EQU 1
1100 R2 EQU 2
1200 R3 EQU 3
1300 R4 LQU 4
1400 R5 CQU 5
1500 R6 LOU 6
1600 R7 LOU 7
1700 EQ LQU 2
1800 k£ LuU 5

2000 . . OEFINE INTERUPTS 1 & 6
2100 MASK EQU \42

* 2200
2300 * * PROGRAM INITIALIZATION
2400 CCTR 1

• 250 DS8L
2600 CLIk
2700 LIM RlMASK
2800 siC Ri
2900 1 BEGIN
3000 RES 24
3100 iINTAOI
3200 +INT1
3300 mL5 8
3400 iINTADb
3500 +INT6
3600 RES 82
3700
3800 . . GL ATE RAMTEK LOOKUP TAHB"
3900 BeGIN LIM R.DAT1
4000 ST R1,ADOR
4100 LIM Rlo
4200 BEGI STI R1,ADDR
4300 IM ADOR
4400. AIM R1,1
_.500 IM R1,256
4600 JC WL,dGI

4dO . . CLLAA IPTERUPT FLAGS & HST RAmTEK
4900 STZ DTREDb
50Ou 5TZ OTHEDI
5100~ LIA' RS,0
5200 kIM R1,O
5.3oo ho R1.\59
5400 LIA 01,\4200
5500 mO N1,\SA
560u Chlii
570U co0
5800
_59"_Q- 6AU LOOKUP TAB & gAIT FUR RAMTEI IChEMUPT

60Uu So L5,UTKEU6

610U LIMI I,LUfAB

* h 66

AFAL.TR-83-1 045

4. F2DCAP.CAP (Continued)

b200 HO Rls\58
6300 hIn R1,\104
6400 HO R1,\59
6500 bIM R1,\2001
6600 HO Rl.\5A
6-700 HOLDI I RI,DZRED6
6800 JC NE.HOLD1
6900 *

7000 -

7100 , READ 512 WORDS FROM BULK MEM & WAIT FOR INTERUPT
7200 . . STORE IN TEMP BUFFER
7300 bIM R4,0
7400 bm R3,0
7500 INPUT SB 15,DTRED1
7600 bLM RI.BUFF1
7700 HO R1,\44
7800 Llm R1.\200
7900 HO R1,\45
8000 Lim R1,\11
8100 HO RI,\46
8200 HOhU2 L RIQTED1
8300 JC. NEHOL02
8400 0
8500 SCALE IMAGE. DATA of FACTOR OF 128
.160o - STORE IN OUTPUT BUFFER
8700 LIM K7,0
8900 bIM RtRUFFl
8900 ST RIADDRI
9000 LIM Hl.UFF
9100 ST RIAODR
9200 LOOP LI R1,AOURl
9300 SRA R1,7
9400 5T1 RlADDR
9500 IM ADORI
9600 IM ADOR
9700 AIM R7,1
98 80 CIP 97,512
9900 JC NELOOP

1000Q

101Ou . SEND 512 WOHOS TO RAMTEK AND WAIT FOR INTERRUPT
.L... - REPEAT ENTI E SEQUENCL 512 TIMES
10300 S8 15,UfRED6
1040o bI R1.RAM
10500 NU R1,\b8

1060-0 IM R1,\20
it ou HiU R1,\59
1080Q0 LIM R1,\2001
10900 dU mI\,5A
J1000 HOLD3 L N1.DTHED6
11100 JC NE,HOb03

I L-Q 0IM RAfMi3
11300 AIM R3,1
..iQ 0 C i R3,512
11500 J(4E,lNPUT
.11600 HALT
11700 J s

11900 . I NTERRUPT SERVICE ROUTINES
1200t0 EVN
12100 INTl STZ 0fk'UI
12200 AIA H4,1

__ _ _ _ _ _ _ _ _ _ _ _ _6

U

AFWAL-TR-83-1045

4. F2DCAP.CAP (Continued)

12300 EMBL
12400 EXS INTADI
12500
12600 EVEN
12700 INT6 STZ DTRED6
12800 AIM R5,1
12900 ENL
13000 £XS INTAD6
13100
13200 . . RAKTEK INU'ERUCTIONS TO LOAD LOOKUP TABLE.
13300 LUTAB DATA \300
13400 DATA \8000
13500 DATA \202
13600 DATI RES 260
13700 .
13800 . . RANTEK INSTkUCTIONS TU SEND IMAGE DATA TU ULSPLAY
13900 RAM DATA \A03
14000 DATA \CO
14100 DATA \0
14200 DATA \0
14300 DATA \IFF
14400 DATA \IFF
14500 DATA \0
14600 DATA \4uU
14700. 8UFF RES 520
14800
14900 . TEMP STORAGE FOR UISCALED DATA
15000 BUFF1 RES 520
15100
15200 , , INTERUPT LINKAGE ADDRESSES
15300 EVEN
15400 INTAD1 RES 2
15500 .INTA06 RES 2
15600
15700 I . LNTERRUPT FLAGS
15600 OTRIED RES I
15900 DTREDb RkS 1
16000

16100 . . B FFER POINTERS
16200 ADDR RES 1
16300 ADDRI RES 1
16400 ENO

68

AFWAL-TR-83-1 045

35. F2DYAX.FOR

0001 PROGRAM F2DVAX
C
C.....THIS PROGRAM SUPPORTS A TWO-DIMENSIONAL FFT COMPUTATION
C WHICH IS ULTI.MATELY PERFORMED bY VAP 01, THE PROGRAM

CG4.NERATES THE INITIAL THREE-OIMeNSIONAL PULSE FUNCTI[ON
C AND SENDS IT TO BULK MEMLJKYe IT THEN GENERATES THE 512
C POINT SINE/CUSIbE COEFFICIENT TABLE AND SEriOS IT TO
C YAP #1 DATA MEM4ORY
C
C

0002 IMPLICIT INTEGER*2 (B-Yl
0003 INCLUDE. 'PSP6LIB;PSPIOF..ENC'

'C
*C - DEFINE PSP 1/0 FUNCTION CODES.

0004 *PARAMETER IOWALL a I !wRIT9 PASS ALL
00ub $ PARAMErER LORALL x2 MNAU PASS ALL
0O00b $PARAMErER IOWOR z 3 !WRITE DEVICE REGISTERS
0007 *PARAMETER IORUR a 4 tMEA) DEVICE REGISTERS
v008 PARAMETER IOINIT = 5 !I'4ITIALIZE DRIL-61F
0009 *PARAMETER ICJSYSC a 6 !SfSCRASN DNA CHANNEL BUS AnD CAP
0010 $PARAMETER IOXOT a 7 iEXECUTE CAP
0011 *-PARAMETER IOWRIT a d !WRITE DATA, GEN A[LERT IF CbUS
0 012 *PARAMETER LOREAD a 9 :READ DATA, GEN ALE.RT IF CBUS
u003 PARAMETER IOWCON a 10 LuRITE, CONTINUATION OF PREVIOUS TRANLk
0014 *PARAMETER IORCON a 11 !RCAOfi CONTINUATION' UF PRIEVIOUS TRANSFER
U015 NPARAMETER IOWNA a 12 1PRITE HARD ADDRESS@ GENEXATIE ALERT mORDS
0016 $PARAMETER IORI4A a 13 !READ HARD ADDRESS, GENERATE AL60.T oURDS
0uI7 *PARAMEtER MAXFUN z 13 LI4AX.CMUM LEGAL FUNCTION CODE

NC
* C -- DEF1 E PSiP I/U SUBFU14CTION4 MODIFIER BITS.

001" 4 PARAMETER IOTR32 a 256 IPERFORM 32-BIT TRANSFERk
0019 * PARAMErER ZOTLST a 512 !XNAAL4 TEST MODE
U020 * PARAMETER IOLOCK a 1024 !LOCKOUT ACCESS TO SLAVE BY OTMER CHANNELb
0021 INCLUDE IPSPSLIBSUTIPCS.Imc'

_OL27* PARAMETER CAPTYPal. IOCTYP=2, VAPTYP23. BMTYP=4, CBk'TYPz5
0023 INCLUDE. 'PSPSLI8:UNtITSX.INC'
0u24 * DATA UP4TDSC

A /'VA@,'P2fi f, 3, 2, 1, 3, 540,
a B O '.' ',11 2p 2, 2, 3, bf0,

* C 'Cl' 1, 1, 1, 0, 0, 0, 540,
I 1 VAl,'P2f,' 1,3,2,3,3,5*0,

k$ lo~ulILKI 5 S 1, 4, 2. 4, 0, 5*0,
r F 'X',114 ,1 1,S5, 4t 4v 4, 3p 1,0 OpItU,
G NtU I, I jL,.I '. * 1 9*0,
m H NU','LLI,f ' *O/

0102 CUMMUN /UNTOSC/ DMIJUC
-0026 XINTEGER*2 UNTV.)CC12,O)
v027 INTEGER*2 IA(512),16(512)
OU29 DOUBLE PkECISION AINC, AUAdX,AAX
002'i COMMON /DKDEVX/ DUN,ORUEV(3,42
uu3u D!NSENSIOO OUTPUT(1027)
-6031 OATA ropsk,Impsp,k'sp,VAP,TMOIOSTAT/1,2, 1,1,0,0/
Q0W32_____ DATA OUTPUT(1) ,tUTPOT(2) ,UUTPUT(3)/0,1U24,-1016/

QU33 UATA DROEV
A / g wP * . AU ' . * 1, 'WP 'lg l o t 6 *, , 6*1 1/

.69

AfWAL-TR-83-1 045
Si. F2DVAX! FOR (CQ!4TLNUED)

C
C.... ASSIGN A VAX 1/O CHANNEL
C

0034 CALL ASNOEV (DRDEV,5,0UkITpIOSTAT)
0035 Ir (IOSTAT *NE. 0) GO TO 9999

C.....G.GENERATE THREE DIMENSIONAL PULaSZ FUNCTION
C

0036 tUMOUT=1024
0037 DO 100 1=4r1027
0038 100 OUTPUTCI)0
0039 DO 101 125,r35,2
0040 101 OUTPUT(I)2-1400
0041. DO 105 1=1,512
0042 IA(Qx0UITPUT(2;I43)
0043 IACI1=ZACI)*(-1)*sL
0044 OUTPUT(2*1+3)=IACI)
0045 105 CONTINUE

C
C.-....SEND PULSE FUNCTIUN TO dULK MkC4Oif
C

0046 DO 110. I=1,16
0047 110 CALL PSPIO(IOWRIT,DUNITUNTDSC(1,b),0,NUMOUT

L DOUTPUT(4)10,IOSTAT)
0048 00 140 1=4,67
0049 140 OUTPUT(I)sO
0050 DO 150 1=17,512
0051 150 CALL PSPIO(IOWR1T,DUNIT,dNTDSC1,)o,0hUMJUT

I OUTPUT(4),O,IUSTAT)

C...,SGENERATE FFT SIIJEtCOSI'd COEFFICIENTS
C

0052 AD=3,14159265
0053 AINC=AD/512
0054 DO 160 Ia21.512
0055 AAXzDCOSCAD)
0056 ABX=DSLN(AO)
0057 AAaAAX*3276H
0058 ABzASX-32768
0059 AD=ADIAINC
0060 lA(I)wA
0001 L8CI)zAS
0062 OUTPUT(2*I.2)=Lb(lJ
0063 OUTPUT(2*I13)=IA(I)
0064 160 CONTINUE

C
Co.... S&ND FFT CUEFFICIENTS TO YAP UATA MEMURY
c

0.065 NUMOUT=1027
0066 CALL Pspiu(iuviRiT,l)UN1TpuNE0SC(1,1)#,0,iUmOU'r

0067 9999 1STO TU(),.,Or
006b END

* A.____ 70 _

AFWAL-TR-83-1 045

* 6-. IOCEXE.FOR

0001 PROGRAM IOCEXE
C
C.....HIS PROGRAM USES THE PSPIO UTILITY TO EXECUTE A-SINARf
C mODULE THAT HAS BEEN LOAi)EU INTO THE OC.
C
C

0002 IMPLICIT INTEGEN*2 (b-Y)
0003 INCLUDE 'PSPSLIB:PSVIOF.INC'

'C
C'-- DEFINE PSP I/U FUNCTION CODES.

0004 * PARAMETER IOWALL a 1 14RITE PASS ALL
0005 " PARAMETER LORALL a 2 !HEAU PASS ALL
0006 $ PARAMETER IOWOR * 3 !WRITE DEVICE REGISTERS
0007 * PARAMETER IDROR a 4 !READ DEVICE REGISTERS
0008 $ PARAMETER IOINIT = 5 LINITIALIZE DRil-8IF
0009 * PARAMETER IOSYSC a 6 'SYSCRASH DMA CHANNEL BUS AND CAP
0010 * PARAMETER IOXQT = 7 .EXECUTE CAP
0011 $ PARAMETER IOWRIT a 8 !WRITE DATA, GEN ALLHT IF CdUS
0012 * PARAMETER IOREAD = 9 !READ DATA, GEN ALERT IF CBUS
0013 $ PARANETER IOWCDN = 10 !WlITE, CONTINUATION UF VREVIOUb TRANSFER
0014 $ PARAMETER IORCOO = 11 !READ, CONTINUATION OF PREVIOUS THANSFER
001b $ PARAMETER IOWHA a 12 !WRITE HARD ADDRESS, GENCHAZE AbERT IUHUS
0016 $ PARAMETER IORHA a 13 !REAO HARD ADDRESS, GENERATE ALbiRT WORDS
U017 * PARAMETER MAXFUN = 13 :MAX£IUM LEGAL FUNCTION COUL

'C
C --- DEFINE PSP I/O SUBFUNCTION MOUIFIER BITS.

0018 P PARAMETER I0TR32 a 256 !PERFORM 32-8IT TRANSFER
0019 * PARAMETER IOTEST = 512 ENAdbLE TEST MOUE
0020 ' PARAMETER IOLOCK a 1024 !LOCKOUT ACCESS TO SLAVE bY OTHER CHANNELS
0021 INCLUDE 'PSPSblB:UTYPES.INC'
0022 * PARAMETER CAPTYPxi, IOCTYP=2, VAPTYP=3, BMTYP24, capryPub
0023 INCLUDE 'PSP$LIB:UNITSX.IfiC
0024 $ OATA UNTDSC

A / 'VAf,' I',' ', 3, 2, 1, 3, 5*0,
b 'IO','C 'r' ', 2p 2v 2, 3, 5*0,

$ C 'CA','IP get it of 0, 0, 5*0,
* ... ! VA'.'P2'.' °e3,2,3.3,5*U,

IB 'UI,ILKI,' 1, 4, 2, 4, 0, 5*0,
F 'NX'.'M ',' ', 5, 4v 4p 4p 3, It 0, 1, 0,

,G NU1,'LL',' ', 9*0,
$ H NUI,'LL'a' 11 9*0/

'C
'C

0025 COMMON /UNTOSC/ DMOOE
0026 ,LmTEGER*2 UNTDSC(12,d)
0027 INTEGEH*2 FUNCWD(3)
0028 COMMON /DRDEVX/ DUNDRDEV(3,4)
0029 DATA TOPSPFRMPSP,PSP,VAP,TMO,IOSTAT/1,2,1I,,U,0/
U03U DATA FUNCWD/Otr"'100000/
0031 DATA DRDEV

A / P#,l AO , l: *, c P',, * 80 ,' 6*1 f/

C
C...ooASSIGN A VAX I/O CHANNEL
C

0032 CALL ASNDEV (DRDEV,5,DUNIT,IDSTAT)
u033 IF (IOSTAT .NE. 0) GO TO 99 9

C

S7

AFWdAL-TR-83-1 045

6. tQCEXE.FOR (CONTINUED)

C EXECUTE I0C

OU34 __CALL PSPIU(URT,UUNTUNUSC(12),U,i

I FkUNCU,0,lUST AT)

VU35 94vg - TU
uo.3b ENCI

A 72

AFWAL-TR-83-1045

7. CAPEXE.FOR

0001 PROGRA* CAPEXE
C
C THIS PROGRAM USES THE PbPI0 UTILITY TU EXECUTE A BINARY
C MUDULE THAT HAS BEEN W(ADED INTU THE CAP*
C
C

Ou2 IMPLICIT INTEGER*2 (B-Y)
0003 1NCLUDE °PSPSLIB:PSPIOF.INC'

C

C --- DEFINE PSP I1/0 FUNCTION COUES.
0004 * PARAMETER IOWALL I !WRITE PASS ALL
0005 $ PARAMETER IORALL 2 IREAD PASS ALL
0006 $ PARAMETER IDWOR a 3 !WRITE DEVICE REGISTERS
0007 PARAMETER IORDR 2 4 !READ DEVICE REGISTERS
0008 - PARAMErER IOINIT :5 iINITIALIZE. DRX-BIF
0009 * PARAMETER IOSYSC 6 1SYSCRASH DNA CHANNEL BUS AND CAP
0010 $ PARAMETER IOXOT a 7 !EXECUTE CAP
0011 * PARAMETER IOWRIT a 8 1WRITE DATA, GEN ABOkRT IF CBUS
0012 * PARAMETER IOREAD z 9 !REAO DATA, GEN ALERT IF CBUS
0013 $ PARAMETER IOWCON = 10 laRITE, CONTINUATION OF PR£VIOUS TRAN6FEH
0014 $ PARAMErER. IORCON = 11 !REAO, CONTINUATION Ob' PREVIOUS TRANSFER
0015 * PARAMETER IOWHA = 12 'wRITL. mARD ADDRESS, GENERATE ALExT wU-0
0016 $ PARAMEEI4 ORHA = 13 iHEAD HARD ADDRESS, GENERATE ALEIT wUHOS
U017 * PARAMETER MAXFUN = 13 !AAXIMUM LEGAL FUNCTIUN CUDE

C

* * C --- DEFINE PSP I/U SUbF'UNCTION OUIFIER BITS.
0018 $. PARAMETER IOTR32 = 256 !PERFORM 32-BIT TRANSFER
0u19 * PARAMETER IOTEST 2 512 !ENABLE TEST UDE
0020 $ PARAMETER IOLOCK = 1024 !LJCKOuT ACCESS TO SLAVE BY OTHCH CHANNELS
0021 INCLUDE 'PSPSLIB:UTYPESINCO
0022 PARAMETER CAPTYPuI, IOCTYP=2, VAPTYP=3, BMTYP=4, CBPTYPUS
0023 INCLUDE 'PSPSLIBS:UNITSX.INC.'
0024 * DATA UNTDSC

A 'VA','Pl', , 3, 2, 1, 3, 5*0,
B a A'o' PC e' 1, 2, 2, 2, 3, 5*0,
C 'CAO@P 1,1 1, 1, a, u, 0, 5*0,

I 1VA1 ,1P2,o ',3,2,3,3,5*0,
E 8U%,'LK',' w, 4, 2, 4, 0, 5*0,
F 1MX' 'M .' I, 5p, 4 4, 4, 3p 1, O, 1, O

* G INUI,'LL ,'% 1, 9*4,
1 NU1,1LLv,o t, 9*0/

C
C

0u25 COMMON /UNTDSC/ UMODE
002b INTEGER*2 UNTDSC(12,8)
0027 INTEGER*2 FUNCWD(3)
002b COMMON /DRDEVX/ DUN,DRDEV(3,4)
0029 DATA TOPSP,kRMPSP,PSP,VAP,rTO,IOSTAT/1,2,011,0,0/

* 030 DATA FNCMO/0,O"luOOUQ/
0031 UATA DRDEV

A /IWPo* oAO', ' ' , O'PO Fo fO8 o: b' * I/
C
C ASSIGN A VAX 1/O CHANNEL
C

0032 CALL ASNDEV (ORDEV,5,OUNITtIOT'AT)
u033 IF (IOSTAT .NE. 0) GU TO 999

C

~73

-a

AFWAL-TR-83-1 045

7. CAPEXE.FOR (CONANUEn)

C EXECUTE CAP

C

1 ,FUNCWU,(),IUSTAT)
C

u03b 9 99 STUP

74

* AFWAL-TR-83-1045

APPENDIX B

FASTBIN USERS MANUAL AND INSTALLATION GUIDE

75

9 AFWAL-TR-83-1 045

FASTBIN USCRIS MANUAL AND INSTALL~ATION GUIDE PAGE 1

PREFACE 17 JAN. d3

0.0 PREFACE

0.1 MANUAL OB.J6CTIVES

THIS MANUAL DESCH113ES THE FASTSIN bItJAiR L.UAU 'iUDULE;
GENER~ATOR FU 11. WE.STINGIIUUSE. PSPX. SIG4AlJ eRUCESSUeC. TH~IS
MANUAL IS DESIGNED PRIMARILY FOR KEFEHENCE ALlmUUGd 1 IS .
SLIGHTLY TUTORIAL.

0,2 INTENIDED AVDIENCE

THIS MANUAL IS IN~TEN0kD FOk READERS WHO ARt. FAM1L1A aifNrH
THE WESTINGHOUSE PSPX* ANt) ,HU uNL)E.STANU The. PROJCESS Ut'
PROGRAM DEVELOPMENT FOR THAT SiSIE.M. IiE RL.AUE. StIUULu ALSU
BE FAMILIAR WITH THE VAX DCL COmMANO L.ANGUAGE A4U) vi~rri rHE

* ~~USE OF THE WESTtINGHUSi. BlfyGLN 8I114AHY L.UAU) .muaLouL

0.3 STRUCTURE UF THIS DOCUME.NT

rHIS MANUAL CONTAINS 4 .SECTIONS Ahuj a. AkPkiLtiCL.S.

1. SECTIUm 1 £r4TNUtUCE.S *AT~A kAbh IS Ub6U FUK.

2. SE.CTiON :d OE.SCHIbE.S TH. ThNiELE WAYS TLJ ,CILVjAjE Im
FASTBIN.L.At IAAGL.

3. SECTIUM 3 U&~SCIBES THE FASTbim OOTPUT.

4. SE.CTUN 4 CUNIAINS INSTRUCTIDNS ON Ck(EAT9i.,sG CUSrciM
FASTh.LN HE.AUEX FILL.S.

b, APPE.NLIX A PRHOVIUES*THE SYNTAX 0L l"iL LXJ.i.NUEUi U.LL
FAST81ti COl4MANU LINE.

6.APPLN4DU. 3 ueiCRIdES Ift1e YnmcE. WAYS TU IL1.0IML. £19L
FASfdINE.AE. IMAGE INTO) A VAX blSW.M,

* 0.4 ASSUCIATk.L t)UCUMr.NXS

FAM161IANITY AIIMr I1L CJl~fEkNIS Ut frL ku.L."jN~ UC~vai.i

77

u AFWAL-TR-83-1 045

FASTSIN Ubt.k'S I4ANUAL A.1LU 1STALaLATILUN GuU) P6 2

1. THE VAX/.Voqb COMMAND LALV(UA(Jt U~r.Klb jjt.

P~ARTICLAR(AIJ&ION 'rU AijU.Lx r': f UWE I (-a
COMSI'Atd FEAA1Lh (F VCL.

2. THE VAX/VMS Vt4?SIiUN 3.0 UIIL11k K i-tK'J~;AiULAL*.
P~AY teAfcTICULAk(ATTk:NXIUV T0 Itir. C kAWT6.x u.t Xkir. uCL
CUMMANI EDt~eiNI-rIoN" LiTI.1 I:r (SE~T CUAivAa)).

3. THE wLSlJ.NGMWUSE PSkPA* CAP' VRG~ h AAN4UAL

(9RAdvu2H01).

________MANUAL (9KAd0U1$0j).

1.-0i3T6KU0iUCTIUW
--

- ULGA~ Vr.UP'Mj4& ru rhE. W45LIM.,4n.-J. ebrA+ 3 1JCM

PROCESSL4 STAXIS 4Ilh:n aR41T1' A 6UURCr PKI;to iHAC IS£
DESI(ivED ru kiUlv ir, fGi'. OF EIX4Hi LTHc CAL', VA tJK -- Lc

PROCESSuaRS. IhIS SOUXLE PROGRAM IS Th iAS~ti-)lf- 1±rt.e r
A4PPRUPRtIAIL. ASSEMLE.K WL PKUUUCkL A14 ASLII Ub@JLL2L .jU~ijrrjt

(_ A mAAC FlLt)I. NtACf A BIiAR LU4AL) AuuUwj6 16~ CLiA'ftd. J6.t'jG

UTILITULS Am)U Th UUfLUT (A *bit, t'u~i.i i I ASiLt1 W~.l rL
AS IRvFUT TU !MEk P~Sk'LJI UTILITY. kFSPUaLU LGAML) nl C :.A -1-C U fA u L -

FILE Im~TU 11*. AkoNUfAHJTE PSPXi* CiJ~ijUNtI-d.&L UCta'u Ai'.L Itir
PMUGAA 14 ReA'iO TU mul TrvLS rtA'NUA6 UtCle tjiji A G Jb

£Hr. FATbirs 6.L4AKY L1UAL MOiVULL CGi4LXAi'UR At~~..Lja.L *4iuvr. 1.e

-OHDrd4 'EU k'HUUUCL LUJAU *'AtUDULL~S ACCLPTA61Aj. 'IU k&W ILa Atw Jn c

-TARGc.T PSPrX+ P~uC4SzuHs.

__2.0 VASTbio Cumat'MAL) bY!tAX

If': Uci~.x lu eKJLUClI ACCL.P'AbLL UJ~kUL', vAbIjLA'L- .XI

_______ uiICrI A LuAUiJ "UOL IS~ dMIN 0-Aif~cC$2~2L..o' ie.le J
.Luc).

2. TrtC. ii;OA L S EC b C k 'l J ,P

3. I r. , t. L r- o~ J 'i Lz. L. i ~ u ptLi~.ItjV -IM -'R Ll .L~ I i run. -imr llA.4ui r Li*

AFWAL-TR-83-1 045

FASTblid Us'jl iAIEUAL, ANU IN~STALiuAT1Q1. jwua. ~ .

FAST6I1W CUMMtANU SYNTAX Ai JAI', 0.3

DCL 4RUt, UtCi, VUHE.iGN AND THE: LAtWU, AJ- tblbiN. T K 1.
FOLOIbNG St.CTIUN6 ULSCRIBE LACH UF Tmt;S LA(JG. ALCIVAII'Jim
M4ETHOD)S. 11 1.8 IMPk3UrTAN'1 1L NUTt ritmn. IIIAT N iauoiX Ur
THE.SE IS USUIAjLLY uSL.V. WHICH 3NE U ,EP6NS ONU IUW idt LUiCAiG
VAX SYSTLA kJ~AA~dL Ja1iSTALLED THE~ r*AbSijty UXI..LXY.

2.1 DCL SKUN

FA ST61N& MAY oL ACTIVAT.L) USLNG £Nh. UCiL CUl4MA~w $dLJ.i I. 111k

EOUt4AT:

SRUN F'AS*9BIw..XL

IF ACT1' AV.L lai rhib MANNER~, FA~ibIN PRUM'PTS rUh:

1, IHkALH r 1i,: THE NAALk U b A LJAIA r'1iu4 r IIMIl

e UC kbt J tUKt Ainchl A Lljku tjJ2 L I-, 1i. r- ii t-

IOC1.I)A1 - tUR iUC #1.
V/AP1.LUAT - tUe VAkP 41,
VAiP2.UAX - bUIh VA1 *;?.

ofxm .D Ar v tCR 'r

IF A t'iLh.L 1 5I NOT 5PtLCi?[LLJ itr oliL U4UijLA *1u
OAT * htk Utk4AUilJ UI~t.CTUtil wrj 1 nar Lhl±A rilu.b lb

PUiivTLU iTi 6f THk. LUGICAL, NA~r L'Ab.)TjAa.

2. ISLuCCU. ribr..:' '~TH.r NA-L t ir. LAbCI.L ~
eL 1r I Xn . Lfk.t AliJ U1 L&.. I i r t IS~ ... A!:'-LJ TO r

LJL M~., L' (C.LLi~ b ilL- C-K-.'i r i l

okr 1AC1 L. 4,4 kL., Lt; i i"Ur D L. 1.

~.IR iUi L u .V I *t. Z)' ie A a PLn~ 04 Lri.. a'

r .~~3 JiLj.i~.

r: t.uttq' I r1%41 j

AFWAL-TR-83-1 045

FAST81N USLR'bi MANUAL ANU 1NSIM~bALLiuiy k~ujLe PAhu. '
FrASTtIN CUMMANUd SV!JTAX Vj J =j83

I AUul'llfjf Wl Uj61.,G TH. UCL St(~' L'uNL,~ -

8E ACii V ATtP.L tin I-)L L ta.G , CU, -I z,

WIrh TIS SYMb~lji SET UPk, THE FOASIOIN~ USt.8 MIf L QAa. &l4.i v

USING THE CUtM'A~it:

SFASbAia C SUUKCr. Fljk Ji

WbtlftL U DENOTr.5 ANa UPTICMAL P;AHAIOL'Vtk..

FASTaIN .iaL PRO.w FrOR:

1. HtEA D.tK Llk: SEk. 0 -;SCR IIb L N L t. Sr-C i Iu vs .I. i~

fAbL& 1,

IF Tt. LJSIl DIU~ NOT SPECIkf <SU~~~j. lia InL

FASITI1A Ci.MA^NU1. THEN F7ASTbI'. VILU PRkj'&'j, r'JK:

2. '56UuCE FIE:' SPE L.ESCH.LPTIUw liu 2~.1.

mehEN AZTIVAIk.O VIA iXiIS tFGHLkIC. COMMl'.U AIlu eA6jiiL.

SOURCE FILEi BUT WITH A rILE. TYPIL UF d~i. inr. hLJ4A.lkc uL

POC!WUcc.S. iuCL tirzEij CAN' tKC.j UN SrvrYUL .i±LJJ . .

2.3 exriL.tjk*U UCL StASiIN

t r 4AaL~ mA..,rr(i0 .h I CH kr AS i'Id.I im 'M 4y u C. ' &C II v 'AL. u L~
r rti %; h E Tr.. ..KT 1-. . wt.u v 'CL Lj, .'4 AU b (.* 'i

6 ~X I ILN U _ UC.4 P, AA rim jX". e.SCtl06W LA' MhPPC..U LA C.
*CU).#dUI tLu'.IL6 bMi tLe'i.Jv 'C~ bbr m.A i. trc A*Llj If a.

C u ;qM A A4I UI

so

AFWAL-TR-83-1045

FASTBSIN IJ6X'S .4ANuAL Aid) INSTALLA1LUN (Guliu 5
FASTSIN. CU,41,AWU S~'vTAA 17 j g --t

SLI UO' w~ OE RUNi VCJI4 bciT i -'cu

AeI'IIU1A C) AINiL t AltaL)L UCUPi
TilE F~)ktiG" CUiMMANO Aetnu)
'fiIL6~ LAAk PRCLENCEL.

3.0 T~HE FAS'r~i, OUTPUJT BINARYX FILE

sdukmrf AFTER ISSUIN.G A LEGAL FAST61N CL4I.AliAL', AA±Ljj,
fERMIATE LEAVIlvk A tiIiARY LOAD 14ODULE FILh. if. Inc;~Li2
JR DEFAULT Oik ,CTUHf, T~is ourpul FILE HAS l1nr SAor. pk'
THE SOURCE F'IA. 4ITH A FEILE TYPC UF biLN kjLcLSS Thid o)_Fkvii
*AS UVEN4IDD.
THE OUrPUT FILtk CAN~ NUvW SE SPECIFIED) AS INjPUT Tu i~h. k' 6 LL L
ILUADEzR JTILJ.LY 4nICi *ILL LUAD gHt bINAMdI LJeJlA CLJ&wE jj\'ik

-THE APFR'IUkRIATt PSP'Xi eKOCt.SSO. TilE; Cuua: !S lr.- RI.MJI .0

4.0i CUSTON iASTta tirA~oc.RS

IN AVD.X0iC ru lhe. STANdDARO) PX* ; 10 L
ME;TIUm~4) IN 'LAbLe. I , IT LS PUSSIBLL r'jR A u~t- h Jj(,;.4r e
ki CUSTOM' hlAOL.A ?1uE iTAT lb ACc?'~L Xu eASL.oI.' M.IIU 1niti

MAY 6iE USED Il~bLAU uF THE STANUARU MrALW' u1iCi ii- Cht.

TAIdLE. TmlS IS WUN USING THE. wESTINiH~u~c di.-ea -jliilI;

1. CREATL ANi t&AFl SOURCli. F1L~ L e , Thr. r tij.I&

SCHEATh I6ALVLYA

WllLRIKI Z iS CUNTRLOL, Z.

2o CL. 04iLN A L) PHEMCJId(S TmIj r'Sr + ±,t e u

S ~ ~~b~L.-AC

4. -iL.- iFY ~. ru T AA Ar,1 Uhrb. Xor.Ia 1 1 ~I. .j itAI r I?.VOki.

u AFWAL-TR-83-1 045

FASTBIN USLA'S MANUAL ANiD INSTAILLATIUit GkJIOr kPA~t 6
CUSTUn4 FASIbIN n".AULeS ~A .

rNE YXAX.L)AT FILL. lb~ Th NE~i CU6TUM h6AL)Et hl Chi *AA
SPECIFILO ASi JjIaPUT TU. FASrbIN. iN E66rSJC. A hct ~ik.I
THE~ LUO MUOuL,6 F'UR £k1. EM"PTY PRUG1HAM A.oiU VI1AT 46 MACL
WHAT ThLSE STEVS' HAVE QiNEIHATCDe

L 82

AFWAL-TR-83-1 045

AkPPENDIA A

BEXTbLt4DkA UCL~ FASTBIN CUmkAwU~ S~mC(

A.1 $FATIN'

1NV0$.6 THE~ iAST PSPXi B~INARtY L.OAD M'OL)ULr. GtjdLI(AIUR I'±
CN4~Ar'LS elLEaS ACCkh;JTAcLE AS INdPUT 'Vi JIIn. PS LUAUI.J ulbr

CPSPLUv*).

QUAL 8IFrlkES UEFAULX
--- - ---- ----

/IUC2 o

SEVN muSl BE SPECIFIED UKc 6L$S. FASfi.4 .'ILL F't Qi'F
'HEADERt FILE.:1

SECTIUi 2.1 AND TAdLL 1.

83

*AFWAL-TR-83-1 045

EXlegoeD L)CL FAST6hL~ CUMAhtD Sli4TAX P'AGE A-k
SFASTHIN l A~~

A.1.2 kKUA1PTSi

h1.ADk.R FILE: <SEE SECION 2.1 ANL) TAkslir 1)

A.1.3 CUiMIANV PAPAMETIKMS

1, <F~;.PC SVECIFIES AN ASCII UCTAL 06uc.CT FlLJ.

THIAT WII1LL bt. USEU TU CREAlkh A eSPA4 odtAR LZJUAIJ
Mu~uLL.. If~ YUU DO NiOT SPECIFY A FILE Tti~r., eiAC._lb_.
USELU bY LUbFAUILX. THIS PAHAME.CER 15 Rk~Uit~u A~uit

.1 vi.UCAfR~b A~k AL1LO~WED IN THt. FIT1E..S~tC.

A.1.4 QUALIFIERS

CREATh;V, A UNIIQUk; LOQAD 14UVULs. TAi~udr.;J -. l A
SPLhCIFIC PSPX+l C0MP0O4EN1 PWCbssuti WVILL~ nrt1~.AL
IASED Uh THIS uUALIFIER. u~t ce Ime l.irat
SPECIFIED UNL6iSS I HPEIiENTAL 16 ubr- .iJ vml1
CASE NU4N E' F HESE ARE ALLUWEU.

2. /OUJTPUT = (MJ.N..SPEC> CUNXHULS TdZi r,'m5r. it ToL~
UIJTPUT UINARY LULAU MUDUL&n FILE~. ol Ut)k"AuuJr FAS101d

PtRO~UCES AN UTPUT r ILEil ltA'r HIAS TH0. SA..i:C *.aui'i t

.oli *1P~ hJ C E FILE±~ EXLui~e i ol'J o .&. r~ I U

'IS &DFAULi.

3. /EXPERsftwA <FVILE> 16 USUALLY~ US6.L VUR
uV ELPNENI UNLY. NHIS UUAuI.F.'.X ALJib 'j1i" kSLIk

iii SerCiFl A uAU A UD)UELP hPf-A~?.M u friF.40 InAd A Cr. U bc

_StLA4CTLI) b Y T H K /-Aa, /IUCI, /V AP I ~. . .

/.AhO lTC. U u A iiIF1g .Pb.

K I 84

U AFWAL-TR-83-1 045

£XTENUED UCL F'AST1N CUMMANL) biNAX A-
SFAST61N J*'l JA.d t%3

A.1.5 E~XAMPLES

1. $FA8TtilN/CAP Db.STFILL
THIS COMMANUL GENERATLS A "CAP EJUAD iiUV'JLt; CALLEV.
TESTFILE.BiN EFRUM THE INPUT F'ILE Tkrt±i..rAC

2. SFASiTblN/VA~l/0UTPUT=ZZZ.Ab3C TSr.XXX
TIS CUMMAND GENERATE~S A VAPI~ LGO MUvULE CALL.)
ZZZ.AbC i7RUM Tk1E SOURCE F~IL1E 'ST.XXX

3. $FASTN/EXVElALTALZtMmDAl TESIk'Lt
THIlS CUMM4ANI GLNiEIATES A diLIARY L1OAD -.iUu.uLi;. CAILj:.

TSTFILE.81N FROM THh; SUUIRCL FJLL TlPSX~lLa...At-
THE EAPE.kIMENTAL HEADER LL~ 6MA.UAr DEISCRlLd.S Thh
PSPXi CUMPWNtdiT PHOCLSSUN FTUR rriICh 16IYIkc.i-
WAS Gk.NtAATt..

sFASTbi±N/xpRii,rAL=AST....A: VA&~l.L;Al. ia'e
PRIUDUCES ThE SAME RESULXS AS
S1'ASTbIri/VAPl TESTFIL .
THEb SAME AFFLlkS TU CAP.DAT, IUC1.OAML, 4AP1.hJAT

t..v C

AFWAL-TR-83-1 045

APPENDI.X5

L'ASTBIN INSTALLATIlIN GUID.

54 T.'RUDUCTIuiN

THIS APPENDIX DESCI41OES HOW TO RECOVER THEii VA~TblN FILLkS
FROM TAPE. ANDi INSALL 1 HE.A P aI.EAL IM'AG6~ UN A VAX(SYSA
THAT IS ALtREAUY EQUIPPEU WITH A wESTtNGHOUSE PbP SuPLRT
SOFT4ARE PACI'A(iL,

.6 ACKUP 'IAPL.

THE FAstBaiN SUFTihARt; 15 PRUVILh.J UN~ A MAG6TV1IC iA- ii
__BACKUP F~kMhT-. Tft BACKUP UIILIJY IS C.~<iz.5.-j IN Irir
VAX/VMS UTIL1ITIES REf.RkLNCE MANUIA[L. TU Kr.UVk. H LL I Lr.,
MOUNT FTE TAPE FORLI(3N $ I F0RE1 Aiuu KtL)- 1mr.
FIL.ES iINTu YOUR FAVURlf. D4RECfRY~ I8U6:

SbACNUP/Vl.HIFY imTAO: <YUuK UlmLCTUi4Y CrCIjH.

~3 PLACIN~G £HL. FASTih IMAGE

THIS SECrIUN DLSCRb.S WHERE TO PLJACE Tt R.ulj ' tI'F
FIL~ES.

PSP$S1iTE4: DikECTORY.

VA &'I * . AT

b,14 I.L AT

AFWAL-TR-83-1 046

FASTBIN INSTALLATION GUIDE -B
PLACImG THE FASTBLIv IMAGE ITA J~.

2. EDIT TtIE SYSTE.M SIA&RTUP FlLt.
SYS$,4AWAGLHj:SXSTAhcTUP.CJm A N A U U) ir- k'U i L: (3
CUMMALNOS:

SASSIGISYSgEM PSPSSYSTEr4: FAST--LAT:.
SASSILm/SYSTLM PSP$SYSTt.M:1ASTbIN.tXL VATLZ

SHOINutG tilE ACrIVATION METHOD

AT THIS POINiT YUU MUST DECIDE HQW YOU WiAN'T USk. W0 ACT.LJA±L
rHE FAST8LiN.tXk. IM1AGE. THE N1RE OPTIM45 ARE OtSCiRIOE.i IN
SECTION 2 OF THE USER'S MAN~UALj. It, iE~ Im L; 161IT .t 6
sUGGEST-u-G YOU USE; DCL iOREI(GN. fH. FULLU~iliq(SECTIL--!
DESCRIBE WaiAI YUU s4UST DO UEPEfjU)IiG ON hu-m YU'U 4A~r TO
ACTIVAfP. tFAbTb.N.

jDC SHUN' ACT1'/ATION

IF YUU CHiOOSc. TU ACTIVATE FAS~bIh lI ukL SJwp 1I

INISTALLATI~ai IS CUmPUT. USERS 1MAk CALL VAST15I;N --:

SIRUN FAST-.DAT:FASTblIN

IFYOU CMUOSE CO ACTJ.VATE FASTbiN VIAI fr Jcu r*'j.RI(:1w
COMMAftO S~bijM TrHF4 FOLL.Ow rHEsE STEPS:

1. EDI.T ihE SYSTi:. LG~lN F7ILL. SYsmANAG -:SlijUGld.Cu!
A14) ADU Tk1L CUMANi

TH i'4'6T-ALLATlU'd ±5 NWI CC;4PLEf2:.. FA ST JIv A b. 1' J;. 12
ACCOR~DAN'CE mI1IH SECTION 2,2 OF JHE USc.4S 'vAtA-;.'k-

8.4.3 --kXTENIwLL UCT, SFASTbIN

ANW tL~u fi. C~o.'AA,'4L
sbtL'r CLW 4A&gU t iqT-..jnATi ATilivf

colaata to DTIC does riOt

I ~~ ~ ~~~~~87pemtf3l gbl Id1Z

u AFWAL-TR-83-1045

FASTBIN INSTALLAXION GUIDE B.
CHOU81MG ThL ACTIVATIUh METHOD 17JA i.

2. r.DIT ThE SYSTLM S'vARTUP ~
SYSSMANAGE:SYTA(TUP,CUi4 ANDL A&JU Tti6 CJLU$A:AAdtJ
SMCR INSTALL SYSSSYSTEM:CLEDIflR/PHIV(CA;.XL CJ

THE INSTAL.ATIUN IS NOW COMPLETL. bAS1'bIN MAi Or. PullIre
ACCORD)AN~CE WITH SECTIuN 2.3 (iF THL USER~'S MANUJAL,

88

O-AI30 655 MULTMORE RADAR SIONA PROCESSOR INTERAONFCLT
U) A R O R 0WRIGST4AERONAUTICAL LABS WRIGHT-PATTERSON

AFB OR N HORN FINE AL MAY 03 AFWAL-TR-R3-104S
UNCLASSIFEDl FlU 17/9 NLI'll"IN

I I i-II 2lMI FIrl~llIIl

ID

oW

mTC WMCoCopy REOXUTION TEST CHART

% A

whom

AFWAL-TR-83-1045

APPENDIX C

CAS CO4AND FILE

11

...6, "

AFMAL-TR-83-1 045

ii0Pk-dkAh CAS3--TH.CS PRO(GRAMI LIV~lfe THk. -4LC&SAstl VLE *4ANIPUL.ATliti'
S! eOa(ASZMdb Of A CAP PIWGIRA~. IT ALSO INYOXIS TRbCAP ANID ShI'
81 ICbItL6SKLU. PUZNNTG LIST FILM.S 16 AVAILAOL4 TO TkL UER.
S! 5e.V~tALb QUA61FIERS &ME AVA16AOGE TO kXECUTC A VAkf of the A55bRLX ____

Si PROCLS3 UK A00 Thk. OkLASSEMb6Y OPTIONe.

S~ T HNfita PRHOGRAM TYPE: CAS OP~TIONS

51AV-AILBL. Ui'L± * AKL:

1 I L--I1T1AhIZL ?Hb; REL Vllil AreU EXIT.
s! A ---- ASSEMBLE 'Ilib PROGRAM.

L L---- LUAD THE PRKOGRAM AND EXIT.
t LT --- LOAD AND) ?NSCAP THE PRIOGRAM.
$I TFIJIJAU,TK3LAV AND FA5TbLNrb htFMURaAPA.

$! 0 ---- A46LNdUE LOAD0 AND OA33C8dLE T~a. PROGRcAM,
S! 3T--A9SCalibh, LOAD DEASSML AND TK.A Td *4NM
$! 0TV -A&L.WLA&t L.OAU, DEA&SCi4BLEP TRSCAP Amu FAST8h Tht PROGRM.
So DL--LWAV A0VU LA5LMOLE THE4 &'KOGRAM0

St Ub?--t.UAD, Ob;ASSC*4BLE AND THSCAP THE PROGRAM.
51 OM.-GOAU. Ub;ASSMG, ?kSC-AP ANV kVAdTdIe TM.. ORO~ikAS.

AU i~uPTION(DaFAULT) ---- ASSEHla;, GOAU, INSCAP AIJO VASTBIft lRUGgAjq.

s.; WRITTEN BY 8.a4 STLPNLNS. gdECAMK UPERATIONAL Ld-JUL-82.

*S! A4UIeI90t 8-tJCT-82 TO INChUDE THkL FASTblif OPT10b.

s! THIS PROGRAM IteVUKa.S SSP AND IRSCAP,
S! NUtk . &exa~i ONLY Th. FILb;NAME whbk4 Rlb;UCSTLA)., -4U e.XTb;N-5I.0N

S INLUIRE FILLNvAMLk ENTER THE FILENA4b L GfaT THCb VILCHtARk;
s IF_'VSLb(.TlTIlLtAMb; GI 9 THENO GOTO dADVIl
S ASKG(A tL~AE.~.. ri5
S IF kPILQS.L" *OR1. Pl.EQS.tdm- T*MEN GOTO 6UADI 1 IF NUT A33 THEN SKIP

sIT 1.mQ8.u1~ O0. IP1.0"S.-OG-VT" hb GOU I..LAUL
$ IF P1lQSuLF" OaR. Pl.EQ3."Di..t' Tt#4 GUfO LOADI
$ CREAJfa. CAi.kUAT 1 CREAI. L14~IbZ1g 'La

ASG,U 6U,

ST3

5 ASSIG4'USLA..GUE he: ST OUTPUT
S~~ ~~ 31141ZAlI aIALIa. FLL.

S UELCE CAS.U A? $ V0mu26;*
s IF Pi OU7*21' Th~aft a.AI IF usit ITI ALI .Lt.U T1104A
S ASSIG; -FZGLftAML- LIS FORGOB I AS3ENSUN LI&T FILL.
$ ia5V 'evL.4fAMV;.CAP L A86&Mdus;a THb; PRUGHAP
s IF PI LW&ua. 'A" ThEN GOTO KNDA I IF O)NLY ASSUING THIr CAII

* s LUAUL: F

S JP~/WgcAi 0F*.UAf CRLA^TL t..JAw FILL

S jsktLTb F IL

S r.R1E V "ASUP_ SON

s Skz " ~ Qo

s DEASSIGN kwetvws
S ASS IAUL..AiUa.L cSI: SiSSUUTPUI

~~ggit &agoglb m91"M

AFMAL-TR-83-1 045

VS- GOxU buouM
$ DEAS: _ _ _ _ _ _ _ _ _ _ _ _ _ _

S ASSILGN IFIF.L.AME'.LST FOR006
S 1L:
8 oRfITS F 0; STuIn
S*dL(Sb k

S~~~ SPV&DA NV6KLb Tnk; LAU&R.
S IF Da.1 .6US. "U* THb.N GUO VO
s _ IFS'1A.klt _ iTHLOADSKIPAS5Ei§rL.1STKCuuEST

S IF Pik;US."L* .GRw. Pl.EQS."LT" *UK*.I'1.bQS"LTF" THWk GUTU SAUPAS

5 IiNdUIRE AhS UU YOU WANT AN4 ASSEN86Y bIbTlUG?
S IF AtIS THEM1 PkINT IF ILIENAPL.&IS
s Pw .URGE 1toAme. I PUkGIL ANUILbLbk;E I 1 SANC A
S SKIPAS:
8 OtLesTE FURO2U.DAT;*,FUR026g*,FOMO25g*, lLU~A4K .k&L;*
S Uk;ASSIG4 t*UKiOS
$*I i' .NkZS. NAO thKh GOTO NOTA
S CONT:
S! IF NOT INtVUlIIaG TASCAP TH&M. ZXIT
S IF P1.k;S."A .LR. &'I.EQS."D" THEN EXIT
S IF&~~U. ..UK. P2.90S."OG. THEN4 EXIT
$ OPEN/wMIT; F VM*OAr CREATE TRSCAP FILE;

s o~NITt. F FIILrJANCOU.NACO
$ CLUbE t
S ASS1i6ue FM .L)T FgRuvb
$ AS86/SkAiJ NWlj SYSSOUTPU?
$ TRSCAP - INVOK. IRSCAP
S 0b.ASSIGv UxS
S OiA.IT FM.QAX;* 'eILkNAM4l' d6*

S! If awUT USInG iASTb.lt' THEN EXIT.
S If_ PirQS0r ON. PI.EGS."DTO .0k. Pl.k;QS.*D." fh~it k.Xlr
s FAiT -iLLNfAQ' I FASTbh THEL PNOGkAo.
CA P ___

s DLL.E 'FIUL,AE'AAC;*
S PUG6_2FlI.k~d4fA~.bIM -
6 EXIT
S -6A0)LLI__
$ WRITKE SYSSUIDTPUT "FIlb;AMC IS TOO IjONGIN

5 PU: I ASK IF DEAS54ULY LIbT:Ini S kmG
6 INQUIIICAS UU YU WANT A DEAM IaSTING
S IF AaS TH4Wj PatlhT 'FlUEtAW.L31

* DCI69TL F0N034.DATI*

s le Pl.k;US.*uGb 0R. VI.EQS."DLI THEN GOTO SKIPAS
8 GUCO 6.t4IA _

S 0)bAbSlGhtu KuU27
S Uk;Lj&;'l. v'.AT;*,FUAgp3Jg$
3 GOfO C~f3________________________

9-2

AFWAL-TR-83-1045

REFERENCES

1. Rafael 6onzala and Paul Wintz, Digital Image Processing, Addison-
Wesley Publishfng Company, 1977.

2. PSP-X IOC/VAP/CHANNEL. BUS USERS MANUAL, 9RA8001HO1, Westinghouse
Defense and Electronics System Center, January 1982.

3. PSP-X CAP PROGRNI4ERS MANUALS, 9RAS002HOI, Westinghouse Defense
and Electronics. Syste Center, January 1982.

4. PSP-X+ COMPILERS REFERENCE MANUAL, 9RA6843HOZ, Westinghouse Defense
and Electronics Systems Center, January 1982.

5. RANTEK R-9050 PROGRANNINK MANUAL, Part No. 503746C, February 1979.

6. VAX/VMS VOLUME 28, Guide to Using Cnmand Procedures, Version 3.0.

93

Irql JllPlql

